System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution.

J Biol Chem

Glycobiology Research and Training Center, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0687, USA.

Published: September 2006

Numerous vertebrate genes are involved in the biology of the oligosaccharide chains attached to glycoconjugates. These genes fall into diverse groups within the conventional Gene Ontology classification. However, they should be evaluated together from functional and evolutionary perspectives in a "biochemical systems" approach, considering each monosaccharide unit's biosynthesis, activation, transport, modification, transfer, recycling, degradation, and recognition. Sialic acid (Sia) residues are monosaccharides at the outer end of glycans on the cell-surface and secreted molecules of vertebrates, mediating recognition by intrinsic or extrinsic (pathogen) receptors. The availability of multiple genome sequences allows a system-wide comparison among primates and rodents of all genes directly involved in Sia biology. Taking this approach, we present further evidence for accelerated evolution in Sia-binding domains of CD33-related Sia-recognizing Ig-like lectins. Other gene classes are more conserved, including those encoding the sialyltransferases that attach Sia residues to glycans. Despite this conservation, tissue sialylation patterns are shown to differ widely among these species, presumably because of rapid evolution of sialyltransferase expression patterns. Analyses of N- and O-glycans of erythrocyte and plasma glycopeptides from these and other mammalian taxa confirmed this phenomenon. Sia modifications on these glycopeptides also appear to be undergoing rapid evolution. This rapid evolution of the sialome presumably results from the ongoing need of organisms to evade microbial pathogens that use Sia residues as receptors. The rapid evolution of Sia-binding domains of the inhibitory CD33-related Sia-recognizing Ig-like lectins is likely to be a secondary consequence, as these inhibitory receptors presumably need to keep up with recognition of the rapidly evolving "self"-sialome.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604221200DOI Listing

Publication Analysis

Top Keywords

rapid evolution
20
sia residues
12
sialic acid
8
primates rodents
8
evolution sia-binding
8
sia-binding domains
8
cd33-related sia-recognizing
8
sia-recognizing ig-like
8
ig-like lectins
8
evolution
6

Similar Publications

The space charge effect induced by high-quality heterojunctions is essential for efficient electrocatalytic processes. Herein, we delicately manipulate intermolecular charge transfer by modifying substituents (-g = -CH3, -H, -NO2) with various electron donating/withdrawing capabilities in CoPc-g/CoS organic-inorganic heterostructures. CoPc-CH3, as a typical electron donor, transfers more electrons to CoS due to the presence of -CH3, forming the strongest space electric field and thus regulating the dual active sites at the interface.

View Article and Find Full Text PDF

Effect of exogenous manipulation of glucocorticoid concentrations on meerkat heart rate, behaviour and vocal production.

Horm Behav

January 2025

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa; Center for the Interdisciplinary Study of Language Evolution, ISLE, University of Zurich, Switzerland.

Encoding of emotional arousal in vocalisations is commonly observed in the animal kingdom, and provides a rapid means of information transfer about an individual's affective responses to internal and external stimuli. As a result, assessing affective arousal-related variation in the acoustic structure of vocalisations can provide insight into how animals perceive both internal and external stimuli, and how this is, in turn, communicated to con- or heterospecifics. However, the underlying physiological mechanisms driving arousal-related acoustic variation remains unclear.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

Rapid and in-depth reconstruction of fluorine-doped bimetallic oxide in electrocatalytic oxygen evolution processes.

J Colloid Interface Sci

January 2025

Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China; School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China. Electronic address:

Most transition metal-based electrocatalysts, when used for the oxygen evolution reaction (OER), undergo significant restructuring under alkaline conditions, forming localized oxides/hydroxides (MOOH), which act as the real active centers, activating adjacent metal sites and creating new active sites that enhance electrocatalytic behavior. Nevertheless, inducing rapid and in-depth self-reconstruction of catalyst surfaces remains a huge challenge. Herein, this work achieves rapid and in-depth self-reconstruction by doping fluorine into the lattice of transition metal oxides (MO).

View Article and Find Full Text PDF

An expanding universe of mutational signatures and its rapid evolution in single-stranded RNA viruses.

Mol Biol Evol

January 2025

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!