Biochemistry, physiology, and complications of blood doping: facts and speculation.

Crit Rev Clin Lab Sci

Dipartimento di Scienze Morfologico-Biomediche, Istituto di Chimica e Microscopia Clinica, Università Degli Studi di Verona, Verona, Italy.

Published: October 2006

Competition is a natural part of human nature. Techniques and substances employed to enhance athletic performance and to achieve unfair success in sport have a long history, and there has been little knowledge or acceptance of potential harmful effects. Among doping practices, blood doping has become an integral part of endurance sport disciplines over the past decade. The definition of blood doping includes methods or substances administered for non-medical reasons to healthy athletes for improving aerobic performance. It includes all means aimed at producing an increased or more efficient mechanism of oxygen transport and delivery to peripheral tissues and muscles. The aim of this review is to discuss the biochemistry, physiology, and complications of blood doping and to provide an update on current antidoping policies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408360600755313DOI Listing

Publication Analysis

Top Keywords

blood doping
16
biochemistry physiology
8
physiology complications
8
complications blood
8
doping
5
blood
4
doping facts
4
facts speculation
4
speculation competition
4
competition natural
4

Similar Publications

Carbon-doped bimetallic oxide nanoflakes for simultaneous electrochemical analysis of ascorbic acid, uric acid, and acetaminophen in sweat.

Anal Methods

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Non-invasive continuous detection using tears or sweat as substitutes for blood samples has become an emerging method for real-time monitoring of human health. However, its development is limited by the low sample volume and low level of analytes. The simultaneous determination of multi-analytes with highly sensitive electrochemical sensing platforms has undoubtedly resulted in breakthrough innovations.

View Article and Find Full Text PDF

Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids.

Talanta

January 2025

Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China. Electronic address:

The widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection.

View Article and Find Full Text PDF

Rationale: LGD-4033, a selective androgen receptor modulator (SARM), is recognized for promoting muscle growth and enhancing athletic performance. Its potent anabolic effects have led to its prohibition in both human and animal sports. Although initial in vitro studies have offered insights into its metabolism, an in-depth in vivo analysis is necessary to fully understand its metabolic pathways.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!