The aim of this study was to evaluate the change in the distribution for the P300 generator, as demonstrated by Low Resolution Electromagnetic Tomography (LORETA) images, in patients with schizophrenia during treatment with olanzapine. Data were obtained from five right-handed patients treated with olanzapine for 6 months. Five right-handed normal volunteers also participated in the study. LORETA images of P300 in response to the odd-ball auditory discrimination task revealed a left dominant lateralized high current source density in the temporal lobes in all control subjects. Although this pattern of brain activation was not evident in patients at baseline, 6-month treatment with olanzapine recovered the left dominant pattern of the electrical density in the temporal regions, such as the Heschl gyrus, and improved performance on a test of verbal learning and memory. Scores of the Brief Psychiatric Rating Scale and the Global Assessment of Functioning Scale also improved during treatment. These results provide the first suggestion that enhancement of verbal memory and the functional status by treatment with some antipsychotic drugs may be associated with modulations of the anatomical configuration of electrical brain activity in patients with schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2006.04.028DOI Listing

Publication Analysis

Top Keywords

loreta images
12
electrical brain
8
brain activity
8
study loreta
8
images p300
8
patients schizophrenia
8
treatment olanzapine
8
left dominant
8
density temporal
8
activity response
4

Similar Publications

Background: The fascinating ability of brain to integrate information from multiple sensory inputs has intrigued many researchers. Audio-visual (AV) interaction is a form of multisensory integration which we encounter to form meaningful representations of the environment around us. There is limited literature related to the underlying neural mechanisms.

View Article and Find Full Text PDF

Background: Sustained activation of default mode network has been implicated for momentary lapses of attention and higher errors during performance of cognitive tasks in attention deficit hyperactive disorder (ADHD) children. Despite emerging evidence indicating the genetic basis of ADHD, there is paucity of literature investigating the alteration of DMN in children with ADHD and their unaffected siblings.

Aim: To study the cortical sources of DMN in children with ADHD compared to their siblings and neurotypical controls.

View Article and Find Full Text PDF

To obtain accurate brain source activities, the highly ill-posed source imaging of electro- and magneto-encephalography (E/MEG) requires proficiency in incorporation of biophysiological constraints and signal-processing techniques. Here, we propose a spatio-temporal-constrained E/MEG source imaging framework-STARTS that can reconstruct the source in a fully automatic way. Specifically, a block-diagonal covariance is adopted to reconstruct the source extents while maintain spatial homogeneity.

View Article and Find Full Text PDF

: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia.

View Article and Find Full Text PDF

Objective: The alterations of the functional network (FN) in anti-N-methyl-Daspartate receptor (NMDAR) encephalitis have been recognized by functional magnetic resonance imaging studies. However, few studies using the electroencephalogram (EEG) have been performed to explore the possible FN changes in anti-NMDAR encephalitis. In this study, the aim was to explore any FN changes in patients with anti-NMDAR encephalitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!