The goal of this work is to make an injectable physically and chemically cross-linking NIPAAm-based copolymer system for endovascular embolization. A copolymer with N-isopropylacrylamide (NIPAAm) and hydroxyethyl methacrylate (HEMA) was synthesized and converted to poly(NIPAAm-co-HEMA-acrylate) functionalized with olefins. When poly(NIPAAm-co-HEMA-acrylate) was mixed with pentaerythritol tetrakis 3-mercaptopropionate (QT) stoichiometrically in a 0.1 N PBS solution of pH 7.4, it formed a temperature-sensitive hydrogel with low swelling through the Michael-type addition reaction and showed improved elastic properties at low frequency compared to physical gelation. This material could be useful for applications requiring water-soluble injection but lower swelling and lower creep properties than available with other soluble in-situ-gelling materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653053 | PMC |
http://dx.doi.org/10.1021/bm060211h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!