Circular ultrasound compounding by designed matrix weighting.

IEEE Trans Med Imaging

Department of Biological Systems Engineering, University of Nebraska, Lincoln 68583, USA.

Published: June 2006

Spatial compounding is an imaging technique that aims to improve image contrast by combining partially decor-related images acquired at different angles or positions. In conventional spatial compounding, data sets are combined with equal weighting. Here, we describe an alternative method of reconstruction using algorithms which weight the data based on a "quality" matrix. The quality matrix is derived from beamforming characteristics. For each data set, the reliability of the data is assumed to vary spatially. By compounding the data based on the quality matrix, a complete image is formed. Here, we describe the construction of a rotational translation stage and tissue-mimicking phantoms that are used in conjunction with a commercial medical ultrasound machine to test our reconstruction algorithms. The new algorithms were found to increase the contrast-to-speckle ratio of simulated cysts and tumors by 61% from raw data, and to significantly increase edge definition of small embedded targets. The new method shows promise as a computationally efficient method of improving contrast and resolution in ultrasound images. The method should be particularly useful in breast imaging, where images from multiple angles can be acquired without interference from bone or air.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tmi.2006.873610DOI Listing

Publication Analysis

Top Keywords

spatial compounding
8
compounding data
8
reconstruction algorithms
8
data based
8
quality matrix
8
data
6
circular ultrasound
4
compounding
4
ultrasound compounding
4
compounding designed
4

Similar Publications

Extreme weather events, including wildfires, are becoming more intense, frequent, and expansive due to climate change, thus increasing negative health outcomes. However, such effects can vary across space, time, and population subgroups, requiring methods that can handle multiple exposed units, account for time-varying confounding, and capture heterogeneous treatment effects. In this article, we proposed an approach based on staggered generalized synthetic control methods to study heterogeneous health effects, using the 2018 California wildfire season as a case study.

View Article and Find Full Text PDF

Fabrication of emulsion microparticles to improve the physicochemical stability of vitamin A acetate.

Food Chem

March 2025

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:

Vitamin A is an essential micronutrient crucial for human health, but it is susceptible to degradation when exposed to light, oxygen, and heat, reducing its effectiveness in food production. This study aims to develop vitamin A acetate (VA) emulsion microparticles under an acidic condition using electrostatic complexation and the viscosifying effect to enhance VA physicochemical stability. The stability, encapsulation efficiency (EE), microstructure, and rheological properties of VA emulsion microparticles at different sodium alginate concentrations were investigated.

View Article and Find Full Text PDF

Optical sectioning methods in three-dimensional bioimaging.

Light Sci Appl

January 2025

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.

In recent advancements in life sciences, optical microscopy has played a crucial role in acquiring high-quality three-dimensional structural and functional information. However, the quality of 3D images is often compromised due to the intense scattering effect in biological tissues, compounded by several issues such as limited spatiotemporal resolution, low signal-to-noise ratio, inadequate depth of penetration, and high phototoxicity. Although various optical sectioning techniques have been developed to address these challenges, each method adheres to distinct imaging principles for specific applications.

View Article and Find Full Text PDF

Criminalizing public space through a decriminalization framework: The paradox of British Columbia, Canada.

Int J Drug Policy

December 2024

Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Stop the Sweeps, Vancouver, BC, Canada.

This commentary explores a recent shift in British Columbia's drug policy under a novel drug "decriminalization" framework. We focus on the province's move toward "recriminalization" under this framework. In short, recriminalization was a shift in BC's drug decriminalization framework to only apply in private residences, and be removed from essentially all outdoor spaces.

View Article and Find Full Text PDF

The mandate for this special issue of Hippocampus was to provide a few examples of one's own work in a relatively personal context. Accordingly, I will discuss some of my own work here, but will also provide a broader arc of ideas and discoveries within which the efforts of myself and many others have taken place. This history begins with the associationists, who proposed that the human mind could be understood, in part, as a compounding of simple associations between contiguously occurring items and events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!