The adenomatous polyposis coli (APC) tumor suppressor protein is mutated in most colorectal carcinomas. In addition to its role in WNT signaling it is proposed to be involved in both cell migration and mitosis. Although a variety of studies have shown an APC localization along lateral membranes of adjacent epithelial cells the existence of a cortical APC localization in mammalian cells remains controversial. To address this we have used matched rat epithelial (NRK-52E) and fibroblast (NRK-49F) cell lines to investigate the localization of APC. Subconfluent cultures of NRK-52E and -49F cells displayed microtubule-associated APC populations by immunostaining. However, confluent NRK-52E, but not -49F monolayers, exhibited a cortical APC distribution. Cortical APC localized in close proximity to a number of cell junction proteins in a microtubule-independent manner while calcium switch experiments suggested that APC was recruited to the cortex only when junction assembly was complete. Confluent NRK-49F and -52E cells also showed contrasting APC localizations in response to monolayer wounding. Our data suggests APC cortical localization is a feature of confluent epithelioid cells and that the subcellular distribution of APC is therefore dependent upon both cell type and context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.20139 | DOI Listing |
Nat Commun
January 2025
Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling.
View Article and Find Full Text PDFJ Physiol
December 2024
Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Serving as an integral node for cognitive processing and value-based decision-making, the orbitofrontal cortex (OFC) plays a multifaceted role in associative learning and reward-driven behaviours through its widespread synaptic integration with both subcortical structures and sensory cortices. Despite the OFC's robust innervation of the olfactory cortex, the functional implications and underlying mechanisms of this top-down influence remain largely unexplored. In this study, we demonstrated that the OFC formed both direct excitatory and indirect inhibitory synaptic connections with pyramidal neurons in the anterior piriform cortex (aPC).
View Article and Find Full Text PDFCell Metab
January 2025
APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland. Electronic address:
Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity.
View Article and Find Full Text PDFHormones (Athens)
December 2024
Genomic and Signaling of Endocrine Tumors team, INSERM U1016, CNRS UMR8104, Cochin Institute, Paris Cité University, Paris, 75005, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!