Recent molecular genetics studies implicate neuregulin 1 (NRG1) and its receptor erbB in the pathophysiology of schizophrenia. Among NRG1 receptors, erbB4 is of particular interest because of its crucial roles in neurodevelopment and in the modulation of N-methyl-D-aspartate (NMDA) receptor signaling. Here, using a new postmortem tissue-stimulation approach, we show a marked increase in NRG1-induced activation of erbB4 in the prefrontal cortex in schizophrenia. Levels of NRG1 and erbB4, however, did not differ between schizophrenia and control groups. To evaluate possible causes for this hyperactivation of erbB4 signaling, we examined the association of erbB4 with PSD-95 (postsynaptic density protein of 95 kDa), as this association has been shown to facilitate activation of erbB4. Schizophrenia subjects showed substantial increases in erbB4-PSD-95 interactions. We found that NRG1 stimulation suppresses NMDA receptor activation in the human prefrontal cortex, as previously reported in the rodent cortex. NRG1-induced suppression of NMDA receptor activation was more pronounced in schizophrenia subjects than in controls, consistent with enhanced NRG1-erbB4 signaling seen in this illness. Therefore, these findings suggest that enhanced NRG1 signaling may contribute to NMDA hypofunction in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm1418DOI Listing

Publication Analysis

Top Keywords

nmda receptor
16
hypofunction schizophrenia
8
activation erbb4
8
prefrontal cortex
8
schizophrenia subjects
8
receptor activation
8
schizophrenia
7
erbb4
6
signaling
5
nmda
5

Similar Publications

The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.

View Article and Find Full Text PDF

Huntingtin plays an essential role in the adult hippocampus.

Neurobiol Dis

January 2025

Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:

The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.

View Article and Find Full Text PDF

Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus.

Cell

January 2025

University of Chinese Academy of Sciences, Beijing, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). However, subunit assembly and molecular architecture of endogenous NMDARs (eNMDARs) in the brain remain elusive. Using conformation- and subunit-dependent antibodies, we purified eNMDARs from adult rat cerebral cortex and hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!