Motivation: The complexity of cancer is prompting researchers to find new ways to synthesize information from diverse data sources and to carry out coordinated research efforts that span multiple institutions. There is a need for standard applications, common data models, and software infrastructure to enable more efficient access to and sharing of distributed computational resources in cancer research. To address this need the National Cancer Institute (NCI) has initiated a national-scale effort, called the cancer Biomedical Informatics Grid (caBIGtrade mark), to develop a federation of interoperable research information systems.

Results: At the heart of the caBIG approach to federated interoperability effort is a Grid middleware infrastructure, called caGrid. In this paper we describe the caGrid framework and its current implementation, caGrid version 0.5. caGrid is a model-driven and service-oriented architecture that synthesizes and extends a number of technologies to provide a standardized framework for the advertising, discovery, and invocation of data and analytical resources. We expect caGrid to greatly facilitate the launch and ongoing management of coordinated cancer research studies involving multiple institutions, to provide the ability to manage and securely share information and analytic resources, and to spur a new generation of research applications that empower researchers to take a more integrative, trans-domain approach to data mining and analysis.

Availability: The caGrid version 0.5 release can be downloaded from https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/. The operational test bed Grid can be accessed through the client included in the release, or through the caGrid-browser web application http://cagrid-browser.nci.nih.gov.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl272DOI Listing

Publication Analysis

Top Keywords

cancer biomedical
8
biomedical informatics
8
informatics grid
8
multiple institutions
8
cagrid version
8
cagrid
7
cancer
6
cagrid design
4
design implementation
4
implementation core
4

Similar Publications

Background: The risk of cognitive decline in cancer survivors may be increased by platinum-based chemotherapy. Evidence indicates that physical exercise has a potential to reduce chemotherapy-related toxicity. The aim of this study was to assess effects of a 6-month aerobic-strength training on cognitive functions, metabolic flexibility, anthropometric parameters and physical fitness in testicular germ cell tumor (TGCT) survivors, treated with platinum-based chemotherapy.

View Article and Find Full Text PDF

The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines.

View Article and Find Full Text PDF

Photothermal therapy (PTT) demonstrates significant potential in cancer treatment, wound healing, and antibacterial therapy, with its efficacy largely depending on the performance of photothermal agents (PTAs). Metal-phenolic network (MPN) materials are ideal PTA candidates due to their low cost, good biocompatibility and excellent ligand-to-metal charge transfer properties. However, not all MPNs exhibit significant photothermal properties, and the vast chemical space of MPNs (over 700,000 potential combinations) complicates the screening of high-photothermal materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!