A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study. | LitMetric

Atrial fibrillation (AF) is believed to be perpetuated by recirculating spiral waves. Atrial structures are often characterized with action potentials of varying morphologies; however, the role of the structure-dependent atrial electrophysiological heterogeneity in spiral wave behaviour is not well understood. The purpose of this study is to determine the effect of action potential morphology heterogeneity associated with the major atrial structures in spiral wave maintenance. The present study also focuses on how this effect is further modulated by the presence of the inherent periodicity in atrial structure. The goals of the study are achieved through the simulation of electrical behaviour in a two-dimensional atrial tissue model that incorporates the representation of action potentials in various structurally distinct regions in the right atrium. Periodic boundary conditions are then imposed to form a cylinder (quasi three-dimensional), thus allowing exploration of the additional effect of structure periodicity on spiral wave behaviour. Transmembrane potential maps and phase singularity traces are analysed to determine effects on spiral wave behaviour. Results demonstrate that the prolonged refractoriness of the crista terminalis (CT) affects the pattern of spiral wave reentry, while the variation in action potential morphology of the other structures does not. The CT anchors the spiral waves, preventing them from drifting away. Spiral wave dynamics is altered when the ends of the sheet are spliced together to form a cylinder. The main effect of the continuous surface is the generation of secondary spiral waves which influences the primary rotors. The interaction of the primary and secondary spiral waves decreased as cylinder diameter increased.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2006.1776DOI Listing

Publication Analysis

Top Keywords

spiral wave
24
spiral waves
16
action potential
12
potential morphology
12
wave behaviour
12
spiral
10
morphology heterogeneity
8
atrial structures
8
action potentials
8
form cylinder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!