Synaptogenesis in the inferior colliculus of the pre-hearing postnatal ferret.

Hear Res

Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.

Published: August 2006

Although intrinsic organization in the inferior colliculus (IC) has been surveyed in a variety of species, current knowledge of synaptogenesis within the mammalian inferior colliculus is limited. The present study surveyed the ultrastructure of the central nucleus of the inferior colliculus in postnatal day (P) P4, P7, P14, and P28 ferrets, prior to the onset of hearing at the end of the first postnatal month with the goal of beginning to characterize the time course of synapse formation in relation to the development of afferent projection patterns within the IC. Results suggest that initial synaptogenesis has occurred in the IC by P4 and continues during the period when maturation of the distribution of axons from brainstem auditory nuclei is taking place.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2006.03.017DOI Listing

Publication Analysis

Top Keywords

inferior colliculus
16
synaptogenesis inferior
4
colliculus
4
colliculus pre-hearing
4
pre-hearing postnatal
4
postnatal ferret
4
ferret intrinsic
4
intrinsic organization
4
organization inferior
4
colliculus surveyed
4

Similar Publications

Neuroimaging model of visceral manipulation in awake rat.

J Neurosci

January 2025

The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA

Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.

View Article and Find Full Text PDF

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Profile-analysis experiments measure the ability to discriminate complex sounds based on patterns, or profiles, in their amplitude spectra. Studies of profile analysis have focused on normal-hearing listeners and target frequencies near 1 kHz. To provide more insight into underlying mechanisms, we studied profile analysis over a large target frequency range (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!