Hazardous jarosite use in developing non-hazardous product for engineering application.

J Hazard Mater

Regional Research Laboratory, CSIR, Habib Ganj Naka, Bhopal 462026, India.

Published: October 2006

Jarosite released from zinc metal extraction process is hazardous in nature and its world wide disposal has become a major environmental concern. In this study, an attempt has been made to immobilise and recycle the jarosite released from Hindustan Zinc Limited, India, using CCRs, so called fly ash, and clay soil. Results revealed that the particle size of jarosite was finer than that of CCRs and had higher porosity and water holding capacity due to fine textured materials resulting in high surface area (10,496.18 +/- 30.90 cm(2)/g). Jarosite contain higher concentration of toxic elements (lead, zinc, sulphur, cadmium, chromium and copper) than that of CCRs. Concentrations of radionuclides such as (226)Ra, (40)K and (228)Ac in jarosite found less than in CCRs are similar to that of soil. Statistically designed experiments on solidified/stabilised (s/s) sintered jarosite--CCRs products confirmed that the compressive strength of jarosite bricks reached as high as 140 kg/cm2 with 14.5% water absorption capacity at the combination of 3:1 ratio of jarosite and clay, respectively, but, concentrations of all the toxic elements recommended by United States Environmental Protection Agency (USEPA)--Toxicity Leachate Characteristics Procedure (TCLP) standard are not within the permissible limits. However, it is confirmed that the toxic elements leaching potentials of s/s-sintered products developed using 2:1 jarosite clay ratio with 15% CCRs comply with the USEPA-TCLP limits and also meet the quality for engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2006.04.054DOI Listing

Publication Analysis

Top Keywords

toxic elements
12
jarosite
8
jarosite released
8
jarosite clay
8
ccrs
5
hazardous jarosite
4
jarosite developing
4
developing non-hazardous
4
non-hazardous product
4
product engineering
4

Similar Publications

Background: Hearing loss (HL) is a common sensory disorder in humans. Studies on the relationship between arsenic, which is a highly toxic and widely distributed heavy metal with a health risk to humans, and hearing status in humans are contradictory and mostly focused on people living in arsenic-contaminated areas. This study investigated the association between urinary arsenic levels and hearing threshold shifts in the general population in the United States.

View Article and Find Full Text PDF

In an era where chemical synthesis of nanomaterial is accounting for the generation of toxic wastes, leading to nanotoxicity, the present work focuses on the extraction of carbon nanodots from available natural sources such as turmeric smoke. The extracted carbon nanodots were characterized and their physical and chemical attributes were confirmed. The antibacterial property of the isolated carbon nanodots was tested against coliforms and oral bacteria.

View Article and Find Full Text PDF

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.

View Article and Find Full Text PDF

Quantitative study on hepatic genotoxicity of neodymium and its molecular mechanisms based on Benchmark Dose method.

Front Pharmacol

December 2024

Institute of Chemical Toxicity Testing/NHC Specialty Laboratory of Food, Safety Risk Assessment and Standard Development/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.

Introduction: Neodymium, a rare earth element, has been shown to induce genotoxicity in mice, but the molecular mechanisms behind this effect are not fully understood. This study aims to investigate the genotoxic effects of intragastric administration of neodymium nitrate (Nd(NO)) over 28 consecutive days and to elucidate the underlying molecular mechanisms.

Methods: We detected the content of neodymium in mouse liver tissue using ICP-MS and assessed the percentage of tail DNA in mouse hepatocytes using the alkaline comet assay to evaluate genotoxicity.

View Article and Find Full Text PDF

Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!