A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.

Biophys Chem

Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki i Wigury Street, 02089 Warsaw, Poland.

Published: September 2006

Fluorescence decays in protein-ligand complexes are described by a new efficient model of continuous distribution of fluorescence lifetimes, and compared with multi-exponential models. Resulted analytical power-like decay function provides good fits to highly complex fluorescence kinetics. Moreover, this is a manifestation of so-called Tsallis q-exponential function, which is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay function was used to study effect of the interaction of E. coli purine nucleoside phosphorylase (PNP-I, the product of the deoD gene) with its specific inhibitor, viz. formycin A (FA), on fluorescence decays of ligand and enzyme tyrosine residues, in the presence of orthophosphate (P(i), a natural co-substrate). The power-like function provides new information about enzyme-ligand complex formation based on the excited state mean lifetime, heterogeneity parameter (q) and a number (N) of decay channels obtained from the variance of gamma distribution of fluorescence decay rates. With FA, which exists as a 85:15 mixture of the N(1)-H and N(2)-H tautomeric forms in aqueous solution, fluorescence intensity decay (lambda(exc)/lambda(em) 270/335 nm) is described by q approximately 1 and N approximately 200. Consequently power-like decay function converges to the single-exponential form, and lifetime distribution to the Dirac delta function. In contrast, selective excitation of the N(2)-H tautomer at higher wavelength led to a highly heterogenic fluorescence decay characterized by q>1 and 10-fold lower number of decay channels. Heterogeneity of fluorescence decays of both PNP-I and FA is enhanced by PNP-FA-P(i) complex formation, reflecting a shift of the tautomeric equilibrium of FA in favor of the N(2)-H species, and fluorescence resonance energy transfer (FRET) from protein tyrosine residue (Tyr160) to the bound N(2)-H tautomer. Moreover, proposed model is simple, and objectively describes heterogeneous nature of studied systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2006.05.014DOI Listing

Publication Analysis

Top Keywords

fluorescence
12
fluorescence decay
12
fluorescence decays
12
decay function
12
decay
9
heterogeneity fluorescence
8
fluorescence resonance
8
resonance energy
8
energy transfer
8
distribution fluorescence
8

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!