Three species of powdery mildew, Erysiphe elevata, E. catalpae, and Neoerysiphe galeopsidis were identified on Catalpa species in England in 2004. A new disease record, N. galeopsidis was the first Catalpa mildew to appear (in June), but it was later out-competed by E. elevata that caused the most serious damage. Both mildews also attacked C. speciosa, C. xerubescens and a new host, xChitalpa tashkentensis, a Chilopsis xCatalpa hybrid. No powdery mildew was detected on C. bungei, C. ovata, or C. fargesii. Identifications of the pathogens using morphological data were fully supported by DNA analysis yielding characteristic rDNA ITS sequences. The sequences placed E. catalpae within the E. aquilegiae clade. The sequences for E. elevata from southern England and France closely matched those from Hungary and North America, confirming the recent spread of this pathogen from the USA. It eventually overran N. galeopsidis and its sudden appearance in the UK could be due to greater aggressiveness and to the production of more ascomata especially during autumns with delayed leaf fall as in 2001. A further species, Oidium hiratae (i.e. Podosphaera sp.), though described from a 1978 UK collection on C. bignonioides, was not detected in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mycres.2006.02.005DOI Listing

Publication Analysis

Top Keywords

powdery mildew
8
morphological phylogenetic
4
phylogenetic comparisons
4
comparisons powdery
4
powdery mildews
4
mildews catalpa
4
catalpa three
4
three species
4
species powdery
4
mildew erysiphe
4

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Powdery mildew (PM), is a significant fungal disease that poses a considerable threat to global agricultural productivity. Autophagy and programmed cell death (PCD) are crucial plant defense responses against PM. However, the role of metacaspases (MCAs) in mediating the interplay between autophagy and PCD in wheat's resistance to PM remains unknown.

View Article and Find Full Text PDF

Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress.

Plant Physiol Biochem

December 2024

Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:

Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.

View Article and Find Full Text PDF

Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.

Appl Environ Microbiol

December 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from , which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host .

View Article and Find Full Text PDF

Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!