Behavioral effects of corpus callosum transection and environmental enrichment in adult rats.

Behav Brain Res

Program of Cognitive Neuroscience, Department of Psychology, Babeş-Bolyai University, 37 Republicii Street, Cluj-Napoca, CJ 400015, Romania.

Published: September 2006

AI Article Synopsis

Article Abstract

A common assumption about the corpus callosum transection (CCX) is that it only affects behaviors heavily relying on interhemispheric communication. However, cerebral laterality is ubiquitous across motor and perceptual, cognitive and emotional domains, and the corpus callosum is important for its establishment. Several recent studies showed that the partial denervation of the sensorimotor isocortex through CCX derepressed neural growth processes that were sensitive to motor demand (experience-dependent neural plasticity). We investigated whether the facilitatory effects of CCX on cortical neural plasticity, shaped by differential housing, extended beyond the motor domain. Adult rats were housed in enriched (EE), standard (SE) or impoverished environments (IE) for 10 weeks, that is, 2 weeks before they underwent CCX or sham surgery, and, then, 8 weeks throughout the experiments. After they recovered from surgery, the behavioral performance of rats was tested using open-field, spontaneous alternation in the T-maze, paw preference, Morris water maze, and tone fear conditioning. The results indicated that the effects of CCX and housing on open-field behavior were independent, with CCX increasing the time spent in the center of the field at the beginning of the observation (i.e., emotionality), and EE and IE increasing rearing (emotionality) and reducing teeth-chattering (habituation), respectively. CCX reduced the frequency of spontaneous alternation, denoting spatial working memory deficits, while housing did not influence this performance. Neither CCX, nor housing significantly affected paw preference lateralization, although CCX was associated with a leftward bias in paw preference. In the Morris water maze, housing had effects on spatial acquisition, while CCX reduced activity, without interfering with spatial memory. CCX did not influence tone fear conditioning, but context fear conditioning seemed to benefit from EE. We conclude that CCX in adult rats has subtle, but specific behavioral effects pertaining to emotionality, spatial working memory, and, possibly, aversively motivated exploration, and these effects are either independent or only peripherally interact with the effects of housing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2006.05.007DOI Listing

Publication Analysis

Top Keywords

corpus callosum
12
adult rats
12
ccx
12
paw preference
12
fear conditioning
12
behavioral effects
8
callosum transection
8
neural plasticity
8
effects ccx
8
spontaneous alternation
8

Similar Publications

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Aim: The aim of this study is to assess associated cerebral supratentorial anomalies in patients who underwent myelomeningocele repair in hopes of developing a better morphological apprehension of the forebrain's anomalies in this category of patients.

Material And Methods: This retrospective observational study assessed 426 pediatric patients who underwent myelomeningocele repair between January 2013 and December 2020. Cranial MRIs with T1- and T2-weighted sequences were obtained as part of the postoperative assessment to determine the presence of associated supratentorial anomalies in pediatric patients following myelomeningocele repair.

View Article and Find Full Text PDF

Background: The reversible splenial lesion syndrome is frequently associated with systemic and central nervous system infections. Whether an infection associated with the occurrence of the reversible splenial lesion syndrome could play a role in the later development of multiple sclerosis is unknown.

Methods: Case Report.

View Article and Find Full Text PDF

Applications of MR Finger printing derived T1 and T2 values in Adult brain: A Systematic review.

F1000Res

January 2025

Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Introduction: Magnetic resonance imaging (MRI) is essential for brain imaging, but conventional methods rely on qualitative contrast, are time-intensive, and prone to variability. Magnetic resonance finger printing (MRF) addresses these limitations by enabling fast, simultaneous mapping of multiple tissue properties like T1, T2. Using dynamic acquisition parameters and a precomputed signal dictionary, MRF provides robust, qualitative maps, improving diagnostic precision and expanding clinical and research applications in brain imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!