Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia).

Sci Total Environ

Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana, Slovenia.

Published: October 2006

Total Hg concentrations and Hg speciation were determined in soils and attic dust in a 160 km2 area around Idrija mercury mine. Attic dust as well as a sample of soil was collected at 100 locations. Mercury phases were separated into cinnabar and non-cinnabar compounds via a thermo-desorption technique. The amount of the non-cinnabar fraction is important since it is potentially bioavailable and results are needed for further risk assessment studies. The concentrations of Hg in attic dust are many times higher than in surrounding soils and the attic dust/soil ratio changes with distance. The highest concentration ratios were identified at the greatest distance from the source of pollution and the lowest close to the source of pollution. This confirms the impact of air emissions on the wider area around Idrija. Furthermore the spatial mercury distribution in the attic dust shows that the influence of atmospheric emissions caused by the Idrija smelter resulted in impacts on the environment on a regional scale. The portions of non-cinnabar compounds increase with distance from the mercury source in both sampling media. Non-cinnabar fractions were found to be enriched in distant areas where fine grained material was deposited. There were two different transport mechanisms of dust particles and gaseous Hg(0) during the mercury production period. Obviously coarse grained particles, with mostly cinnabar-bound Hg settled in the immediate vicinity of the smokestack of the smelter, whereas the fine grained fraction could be dispersed further ahead. This is represented by the percentage of cinnabar-bound Hg in attic dust and soil decreasing with distance from the smelter. Gaseous Hg(0) is probably bound to fine and ultrafine aerosols with longer residence time against deposition. The consequence is that fine grained material with Hg2+ and Hg0 prevails in remote localities and is bound in soils and dust with matrix and organic matter as non-cinnabar mercury compounds. The distributions of mercury species in attic dust and soils along the Idrijca River show that in the region from Idrija to Spodnja Idrija the portions of cinnabar and non-cinnabar are about equal, while in the upper and in the lower Idrijca valley non-cinnabar bound mercury prevails. The applicability of attic dust for tracing the mercury halo in the Idrija area was successfully shown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2006.05.006DOI Listing

Publication Analysis

Top Keywords

attic dust
32
soils attic
12
fine grained
12
dust
10
mercury
10
attic
9
idrija mercury
8
mercury mine
8
area idrija
8
cinnabar non-cinnabar
8

Similar Publications

Oral bioaccessibility of potentially toxic elements in various urban environmental media.

Environ Geochem Health

June 2024

Geological Survey of Slovenia, Dimičeva Ulica 14, 1000, Ljubljana, Slovenia.

An important aspect of geochemical studies is determining health hazard of potentially toxic elements (PTEs). Key information on PTEs behaviour in the human body in case of their ingestion is provided with the use of in vitro bioaccessibility tests. We analysed and compared oral bioaccessibility of a wide range of PTEs (As, Cd, Ce, Cr, Cu, Hg, La, Li, Ni, Pb, Sb, Sn, Zn), including some that are not often studied but might pose a human health hazard, in soil, attic dust, street dust, and household dust, using Unified BARGE Method (UBM).

View Article and Find Full Text PDF

Distribution and impacts of contamination by natural and artificial radionuclides in attic dust and urban soil samples from a former industrial Hungarian city: A case study from Salgótarján.

J Environ Radioact

December 2023

Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary; Institute of Earth Physics and Space Science, HUN-REN, Csatkai E. u. 6-8, 9400, Sopron, Hungary. Electronic address:

Primordial radionuclides can be found in all environmental compartments. Since coal-fired power plants (CFPP) can be a source of additional radionuclide contamination because coal contains natural radioactive isotopes such as U (Ra) and Th. This study investigated the impact of such possible radionuclide contamination from former heavy industrial activities, namely a former local coal-fired power plant, in urban soils and attic dust in Salgótarján, Hungary.

View Article and Find Full Text PDF

The content of 41 chemical elements (Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, Sb, Sc, Se, Sm, Sr, Tb, Th, Ti, Tm, U, V, W, and Zn) was determined in attic dust, household dust and soil samples collected from 33 houses in the area of the town of Veles, North Macedonia. Silver, Cd, Cu, Li, P, and, Pb were analyzed by inductively coupled plasma - atomic emission spectrometry while the other elements were analyzed by neutron activation analysis. The study area has been continuously exposed to high amounts of potentially toxic elements due to the emission from an abandoned Pb-Zn smelter plant.

View Article and Find Full Text PDF

Activity concentration of Cs in undisturbed attic dust collected from Salgótarján and Ózd (northern Hungary).

J Environ Radioact

October 2022

Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Institute of Earth Physics and Space Science, Eötvös Loránd Research Network, Csatkai E. u. 6-8, 9400, Sopron, Hungary. Electronic address:

Due to the Chernobyl nuclear power plant accident, contaminated air masses, containing Cs, were widely propagated across all of Europe. Cesium-137 is easily adsorbed on aerosol particles as it returns to the lithosphere/pedosphere/via wet and dry deposition in the form of a radioactive fallout component. Following the nuclear accident, primary attention was paid to agricultural areas and less to urban environments.

View Article and Find Full Text PDF

Attic dust: an archive of historical air contamination of the urban environment and potential hazard to health?

J Hazard Mater

June 2022

Geological Survey of Slovenia, Dimičeva ulica 14, Ljubljana SI-1000, Slovenia. Electronic address:

A comprehensive study of attic dust in an urban area is presented. Its entire life cycle, from determining historical emission sources to recognising the processes that take place in attic dust and its potential to impact human health is discussed. Its chemical composition and morphological characteristics of individual solid particles reflect past anthropogenic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!