Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor.

J Plant Res

Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der Pflanzen, Hindenburgplatz 55, 48143, Münster, Germany.

Published: July 2006

Group II introns are widespread in plant cell organelles. In vivo, most if not all plant group II introns do not self-splice but require the assistance of proteinaceous splicing factors. In some cases, a splicing factor (also referred to as maturase) is encoded within the intronic sequence and produced by translation of the (excised) intron RNA. However, most present-day group II introns in plant organellar genomes do not contain open reading frames (ORFs) for splicing factors, and their excision may depend on proteins encoded by other organellar introns or splicing factors encoded in the nuclear genome. Whether or not the ancestors of all of these noncoding organellar introns originally contained ORFs for maturases is currently unknown. Here we show that a noncoding intron in the mitochondrial cox2 gene of seed plants is likely to be derived from an ancestral reverse transcriptase/maturase-encoding form. We detected remnants of maturase and reverse transcriptase sequences in the 2.7 kb cox2 intron of Ginkgo biloba, the only living species of an ancient gymnosperm lineage, suggesting that the intron originally harbored a splicing factor. This finding supports the earlier proposed hypothesis that the ancient group II introns that invaded organellar genomes were autonomous genetic entities in that they encoded the factor(s) required for their own excision and mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-006-0284-0DOI Listing

Publication Analysis

Top Keywords

group introns
16
splicing factors
12
reverse transcriptase/maturase-encoding
8
splicing factor
8
organellar genomes
8
organellar introns
8
introns
6
group
5
intron
5
splicing
5

Similar Publications

A previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ.

View Article and Find Full Text PDF

Plant phylogenetics has been revolutionised in the genomic era, with target capture acting as the primary workhorse of most recent research in the new field of phylogenomics. Target capture (aka Hyb-Seq) allows researchers to sequence hundreds of genomic regions (loci) of their choosing, at relatively low cost per sample, from which to derive phylogenetically informative data. Although this highly flexible and widely applicable method has rightly earned its place as the field's standard, it does not come without its challenges.

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

Urinary schistosomiasis is caused by the blood fluke , which is predominantly found in Africa. The freshwater snail is its main intermediate host. The species that make up the group are genetically complex, and their taxonomic status remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!