A 5'-C-allylthymidine derivative was prepared from thymidine by the application of a stereoselective allylation procedure and its 5'(S)-configuration was confirmed. From this nucleoside derivative, appropriately protected building blocks were prepared and coupled using standard phosphoramidite chemistry to afford a dinucleotide with two 5'-C-allylgroups. This molecule was used as a substrate for a ring-closing metathesis (RCM) reaction and after deprotection, a 1 : 1 mixture of E- and Z-isomers of a cyclic dinucleotide with an unsaturated 5'-C-to-5'-C connection was obtained. Alternatively, a hydrogenation of the double bond and deprotection afforded a saturated cyclic dinucleotide. An advanced NMR-examination confirmed the constitution of this molecule and indicated a restriction in its overall conformational freedom. After variation of the protecting group strategy, a phosphoramidite building block of the saturated cyclic dinucleotide with the 5'-O-position protected as a pixyl ether and the phosphate protected as a methyl phosphotriester was obtained. This building block was used in the preparation of two 14-mer oligonucleotides with a central artificial bend due to the cyclic dinucleotide moiety. These were found to destabilise duplexes, slightly destabilise bulged duplexes but, to some extent, stabilise a three-way junction in high Mg(2+)-concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b603830a | DOI Listing |
Curr Pharm Des
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway is an natural immune response signaling pathway in the human body that is essential for sensing abnormal DNA aggregation in the cell. When the cGAS protein senses abnormal or damaged DNA, it forms a second messenger called cyclic dinucleotide (cGAMP). The cycled dinucleotide will activate the downstream STING protein, thereby inducing the expression of inflammatory cytokines such as type I interferon, which binds to receptors on its own cell membrane and ultimately initiates multiple immune response pathways.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons.
View Article and Find Full Text PDFImmunity
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA. Electronic address:
Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:
Radiation-resistant bacteria are of great application potential in various fields, including bioindustry and bioremediation of radioactive waste. However, how radiation-resistant bacteria combat against invading phages is seldom addressed. Here, we present a series of crystal structures of a sensor and an effector of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) from a radioresistant bacterium Deinococcus wulumuqiensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!