The deuterostomes are the clade of animals for which we have the most detailed understanding of Hox cluster organisation. With the Hox cluster of amphioxus (Branchiostoma floridae) we have the best prototypical, least derived Hox cluster for the group, whilst the urochordates present us with some of the most highly derived and disintegrated clusters. Combined with the detailed mechanistic understanding of vertebrate Hox regulation, the deuterostomes provide much of the most useful data for understanding Hox cluster evolution. Considering both the prototypical and derived deuterostome Hox clusters leads us to hypothesize that Temporal Colinearity is the main constraining force on Hox cluster organisation, but until we have a much deeper understanding of the mechanistic basis for this phenomenon, and know how widespread across the Bilateria the mechanism(s) is/are, then we cannot know how the Hox cluster of the last common bilaterian operated and what have been the major evolutionary forces operating upon the Hox gene cluster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458434 | PMC |
http://dx.doi.org/10.7150/ijbs.2.95 | DOI Listing |
Cancers (Basel)
January 2025
Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
The HOX gene family encodes for regulatory transcription factors that play a crucial role in embryogenesis and differentiation of adult cells. This highly conserved family of genes consists of thirty-nine genes in humans that are located in four clusters, A-D, on different chromosomes. While early studies on the HOX gene family have been focused on embryonic development and its related disorders, research has shifted to examine aberrant expression of HOX genes and the subsequent implication in cancer prediction and progression.
View Article and Find Full Text PDFDokl Biol Sci
January 2025
Biological Faculty, Moscow State University, Moscow, Russia.
Expression of 11 genes of the Hox cluster (SiHox1, 2, 3, 5, 6, 7, 8, 9/10, 11/13a, 11/13b, and 11/13c) was assessed in the sea urchin Strongylocentrotus intermedius at early developmental stages, including the blastula (13 h post fertilization (hpf)), gastrula (35 hpf), prism (46 hpf), and pluteus (4 and 9 days post fertilization (dpf)) stages. Expression of SiHox7, 11/13b, and 11/13c was observed at the blastula stage; early activation of 11/13c was detected for the first time in regular sea urchins. The expression level was very low at the gastrula and prism stages.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.
View Article and Find Full Text PDFGenome Res
January 2025
Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates.
View Article and Find Full Text PDFSci Rep
December 2024
Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada.
Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!