Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupled layer 2/3 cortical pyramidal neurons. Using quantal analysis and mEPSP analysis, we demonstrate that a lowered extracellular Ca2+ produces a reduction in the postsynaptic quantal size in addition to its known effect on release probability. An elevated Mg2+ level can prevent this reduction in postsynaptic efficacy at subphysiological Ca2+ levels. We show that the calcium-dependent effect on postsynaptic quantal size is mediated by group 1 metabotropic glutamate receptors, acting via CaMKII (Ca2+/calmodulin-dependent protein kinase II) and PKC. Therefore, physiologically relevant changes in extracellular Ca2+ can regulate information transfer at cortical synapses via both presynaptic and postsynaptic mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675184PMC
http://dx.doi.org/10.1523/JNEUROSCI.5128-05.2006DOI Listing

Publication Analysis

Top Keywords

extracellular ca2+
12
postsynaptic efficacy
8
group metabotropic
8
metabotropic glutamate
8
glutamate receptors
8
release probability
8
physiologically relevant
8
reduction postsynaptic
8
postsynaptic quantal
8
quantal size
8

Similar Publications

Extracellular AMP Inhibits Pollen Tube Growth in via Disrupted Calcium Gradient and Disorganized Microfilaments.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.

View Article and Find Full Text PDF

Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.

View Article and Find Full Text PDF

The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!