In neurons, L-type calcium channels (CaV1.2 and CaV1.3) regulate an extensive range of functions. However, the roles of CaV1.3-containing L channels, which are physiologically and pharmacologically distinct from the better understood CaV1.2 channels, are only beginning to be determined. We find that CaV1.3 channels are modulated by the insulin-like growth factor-1/receptor tyrosine kinase (IGF-1/RTK) through a signaling pathway that involves phospholipase C, calcium release from IP3-sensitive internal stores, and calcium/calmodulin kinase II. In addition, we find that the IGF-1-induced modulation requires phosphorylation of a specific serine residue, S1486, in the EF hand motif of the CaV1.3 subunit. This modulation alters CaV1.3 activity, causing a left shift in the current-voltage relationship and strongly potentiating peak currents at hyperpolarized membrane potentials. We also find that CaV1.3 channels and their RTK-dependent potentiation contribute to the regulation of the survival-promoting transcription factor cAMP response element-binding protein (CREB): in both cortical and hippocampal neurons, depolarization and IGF-1 rapidly increase phospho-CREB levels in a manner that requires CaV1.3 activity and the S1486 phosphorylation site to achieve a full effect. Although the full effects of CaV1.3 channels remain to be determined, their preferential localization to dendritic shafts and spine heads coupled with their ability to activate at relatively hyperpolarized and even subthreshold potentials suggests that CaV1.3 activity may subserve different cellular functions from CaV1.2 and, in particular, may be important in transducing signals initiated by excitatory neurotransmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675183 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0481-06.2006 | DOI Listing |
Brain
August 2022
Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK.
Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4.
View Article and Find Full Text PDFWiley Interdiscip Rev Membr Transp Signal
March 2014
Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known 1 subunits (Cav1.
View Article and Find Full Text PDFExp Physiol
December 2012
Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2008
Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!