A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolism of 3-nitrotyrosine induces apoptotic death in dopaminergic cells. | LitMetric

Intrastriatal injection of 3-nitrotyrosine, which is a biomarker for nitrating oxidants, provokes dopaminergic neuronal death in rats by unknown mechanisms. Herein, we show that extracellular 3-nitrotyrosine is transported via the l-aromatic amino acid transporter in nondopaminergic NT2 cells, whereas in dopaminergic PC12 cells, it is transported by both the l-aromatic amino acid and the dopamine transporters. In both cell lines, 3-nitrotyrosine is a substrate for tyrosine tubulin ligase, resulting in its incorporation into the C terminus of alpha-tubulin. In NT2 cells, incorporation of 3-nitrotyrosine into alpha-tubulin induces a progressive, reversible reorganization of the microtubule architecture. In PC12 cells, 3-nitrotyrosine decreases intracellular dopamine levels and is metabolized by the concerted action of the aromatic amino acid decarboxylase and monoamine oxidase. Intracellular levels of 133 micromol of 3-nitrotyrosine per mole of tyrosine did not alter NT2 viability but induced PC12 apoptosis. The cell death was reversed by caspases and aromatic amino acid decarboxylase and monoamine oxidase inhibitors. 3-Nitrotyrosine induced loss of tyrosine hydroxylase-positive primary rat neurons, which was also prevented by an aromatic amino acid decarboxylase inhibitor. These findings provide a novel mechanism by which products generated by reactive nitrogen species induce dopaminergic neuron death and thus may contribute to the selective neurodegeneration in Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675196PMC
http://dx.doi.org/10.1523/JNEUROSCI.1038-06.2006DOI Listing

Publication Analysis

Top Keywords

amino acid
20
aromatic amino
12
acid decarboxylase
12
transported l-aromatic
8
l-aromatic amino
8
nt2 cells
8
pc12 cells
8
decarboxylase monoamine
8
monoamine oxidase
8
3-nitrotyrosine
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!