Minimizing interindividual variability in drug exposure is an important goal for drug discovery. The reliability of the selective CYP2D6 inhibitor quinidine was evaluated in a retrospective analysis using a standardized approach that avoids laboratory-to-laboratory variation. The goal was to evaluate the reliability of in vitro metabolism studies for predicting extensive metabolizer (EM)/poor metabolizer (PM) exposure differences. Using available literature, 18 CYP2D6 substrates were selected for further analysis. In vitro microsomal studies were conducted at 1 microM substrate and 0.5 microM P450 to monitor substrate depletion. An estimate of the fraction metabolized by CYP2D6 in microsomes was derived from the rate constant determined with and without 1 microM quinidine for 11 substrates. Clearance in EM and PM subjects and fractional recovery of metabolites were taken from the literature. A nonlinear relationship between the contribution of CYP2D6 and decreased oral clearance for PMs relative to EMs was evident. For drugs having <60% CYP2D6 involvement in vivo, a modest difference between EM and PM exposure was observed (<2.5-fold). For major CYP2D6 substrates (>60%), more dramatic exposure differences were observed (3.5- to 53-fold). For compounds primarily eliminated by hepatic P450 and with sufficient turnover to be evaluated in vitro, the fraction metabolized by CYP2D6 in vitro compared favorably with the in vivo data. The in vitro estimation of fraction metabolized using quinidine as a specific inhibitor provided an excellent predictive tool. Results from microsomal substrate depletion experiments can be used with confidence to select compounds in drug discovery using a cutoff of >60% metabolism by CYP2D6.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.105.008714DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
cyp2d6
6
minimizing polymorphic
4
metabolism
4
polymorphic metabolism
4
metabolism drug
4
discovery evaluation
4
evaluation utility
4
utility vitro
4
vitro methods
4

Similar Publications

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Unlocking the potential of : A breakthrough in liver cancer treatment Wnt/β-catenin pathway modulation.

World J Gastroenterol

January 2025

Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.

Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.

View Article and Find Full Text PDF

Podophyllotoxin, along with its numerous derivatives and related compounds, is well known for its broad-spectrum pharmacological activity, especially for anticancer potential. In this study, several isatin-podophyllotoxin hybrid compounds were successfully synthesized with good yields through microwave-prompted three-component reactions of 2-amino-1,4-naphthoquinone, various substituted isatins, and tetronic acid. Their cytotoxicity was assessed against four types of human cancer cell lines, HepG2 (hepatoma carcinoma), MCF7 (breast cancer), A549 (non-small lung cancer), and KB (epidermoid carcinoma), alongside nontumorigenic HEK-293 human embryonic kidney cells.

View Article and Find Full Text PDF

Objective: Chronic kidney disease (CKD) is a major global health problem. In clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS) formula is commonly used to treat CKD. However, the molecular mechanisms by which JPYS targets and modulates the host immune response remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!