Regulation of AKAP-membrane interactions by calcium.

J Biol Chem

Department of Pharmacology, School of Medicine, Heath Sciences Center, State University of New York, Stony Brook, New York 11794-8651, USA.

Published: August 2006

The AKAP gravin is a scaffold for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta2-adrenergic receptors. Gravin binds to the receptor through well characterized protein-protein interactions. These interactions are facilitated approximately 1000-fold when gravin is anchored to the cytoplasmic leaflet of the plasma membrane. Although the N-terminal region (approximately 550 residues) is highly negatively charged and probably natively unfolded, it could anchor gravin to the inner leaflet through hydrophobic insertion of its N-terminal myristate and electrostatic binding of three short positively charged domains (PCDs). Loss of the site of N-myristoylation was found to affect neither AKAP macroscopic localization nor AKAP function. Synthetic peptides corresponding to PCD1-3 bound in vitro to unilamellar phospholipid vesicles with high affinity, a binding reversed by calmodulin in the presence of Ca2+. In vivo gravin localization is regulated by intracellular Ca2+, a function mapping to the N terminus of the protein harboring PCD1, PCD2, and PCD3. Mutation of any two PCDs eliminates membrane association of the non-myristoylated gravin, the sensitivity to Ca2+/calmodulin, and the ability of this scaffold to catalyze receptor resensitization and recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M601813200DOI Listing

Publication Analysis

Top Keywords

resensitization recycling
8
gravin
6
regulation akap-membrane
4
akap-membrane interactions
4
interactions calcium
4
calcium akap
4
akap gravin
4
gravin scaffold
4
scaffold protein
4
protein kinases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!