Background & Aims: Human cervical cancer oncogene (HCCR-1) has appeared to act as a negative regulator of p53 and contributes to tumorigenesis of various organs including the colon. We identified the HCCR-1 binding protein deleted in polyposis 1 (DP1) and accessed the role of HCCR-1 and DP1 in colon tumorigenesis.
Methods: Yeast 2-hybrid was used to identify HCCR-1 interacting proteins. Various molecular biological approaches were used to examine the expression profile of HCCR-1 and DP1, subcellular localization, epitope mapping, the biological role of DP1, and the serum HCCR-1 level. Loss of heterozygosity frequency around DP1 also was examined.
Results: We identified that HCCR-1 interacted with DP1. These 2 proteins colocalized in mitochondria but the expression of HCCR-1 showed negative correlation with that of DP1 in colorectal cancer (CRC). DP1 played a tumor-suppressor role in colon tumorigenesis (ie, DP1-transfected RKO cells showed growth inhibition, apoptosis, decreased telomerase activity, and up-regulation of p53). These phenomena were reversed when HCCR-1 was overexpressed. Loss of heterozygosity around the DP1 gene was observed frequently (50%) in CRCs. We examined the use of serum HCCR-1 in CRC patients. The sensitivity of HCCR-1 (76.0%) for detecting CRC was proven to be much higher than that of CA19-9 (32.0%).
Conclusions: DP1 plays a tumor-suppressor role in CRC. DP1 and HCCR-1 are supposed to regulate each other negatively by interaction, but further study is required to get better insight into the biological significance of the interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2006.03.055 | DOI Listing |
Funct Integr Genomics
January 2025
College of Pharmacy, The Islamic University, Najaf, Iraq.
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression.
View Article and Find Full Text PDFNat Cancer
January 2025
Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK.
CDKN2A is a tumor suppressor located in chromosome 9p21 and frequently lost in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). How CDKN2A and other 9p21 gene co-deletions affect EAC evolution remains understudied. We explored the effects of 9p21 loss in EACs and cancer progressor and non-progressor BEs with matched genomic, transcriptomic and clinical data.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Université de Reims Champagne-Ardenne, INSERM, P3Cell, UMR-S 1250, Reims, France. Electronic address:
The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.
View Article and Find Full Text PDFElife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!