Cranial osteopathy: its fate seems clear.

Chiropr Osteopat

Department of Anatomy, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.

Published: June 2006

Background: According to the original model of cranial osteopathy, intrinsic rhythmic movements of the human brain cause rhythmic fluctuations of cerebrospinal fluid and specific relational changes among dural membranes, cranial bones, and the sacrum. Practitioners believe they can palpably modify parameters of this mechanism to a patient's health advantage.

Discussion: This treatment regime lacks a biologically plausible mechanism, shows no diagnostic reliability, and offers little hope that any direct clinical effect will ever be shown. In spite of almost uniformly negative research findings, "cranial" methods remain popular with many practitioners and patients.

Summary: Until outcome studies show that these techniques produce a direct and positive clinical effect, they should be dropped from all academic curricula; insurance companies should stop paying for them; and patients should invest their time, money, and health elsewhere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564028PMC
http://dx.doi.org/10.1186/1746-1340-14-10DOI Listing

Publication Analysis

Top Keywords

cranial osteopathy
8
osteopathy fate
4
fate clear
4
clear background
4
background original
4
original model
4
model cranial
4
osteopathy intrinsic
4
intrinsic rhythmic
4
rhythmic movements
4

Similar Publications

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Background: The stability of soft and hard tissues surrounding the implant is not only a matter of aesthetics, but also affects the long-term stability of the implant. The present study was to explore the influence of buccal mucosa width/height (W/H) ratio, emergence profile and buccal bone width on peri-implant soft and hard tissue changes in the posterior region.

Methods: Fifty-eight posterior implant restoration cases were recruited in this study.

View Article and Find Full Text PDF

The Role of Gli1 Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment.

J Oral Rehabil

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.

Objective: This review summarises the role of Gli1 (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases.

Design: The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching.

Results: Gli1 mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle.

View Article and Find Full Text PDF

Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.

View Article and Find Full Text PDF

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!