Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pesticide methoxychlor (MXC) is a reproductive toxicant that targets antral follicles of the mammalian ovary. Cytochrome P450 enzymes metabolize MXC to mono-OH MXC (1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane [mono-OH]) and bis-OH MXC (1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane [HPTE]), two compounds that are proposed to be more toxic than the parent compound, can interact with the estrogen receptor (ER), and are proposed to be responsible for ovarian toxicity. Thus, this work tested the hypothesis that MXC metabolites may be responsible for inducing antral follicle-specific toxicities in the ovary and that this toxicity may be mediated through ER-regulated pathways. Mouse antral follicles were isolated and exposed to mono-OH (0.01-10 microg/ml), HPTE (0.01-10 microg/ml), or MXC (100 microg/ml) alone or in combination with ICI 182,780 (ICI; 1 microM) or 17beta-estradiol (E2; 10 and 50 nM) for 96 h. Follicle diameters were measured at 24-h intervals. After culture, follicles were morphologically evaluated for atresia. Both mono-OH and HPTE (10 microg/ml) inhibited follicle growth and increased follicle atresia. The antiestrogen, ICI, did not protect antral follicles from MXC or metabolite toxicity in regard to follicle growth or atresia, but E2 decreased MXC- and mono-OH-induced atresia in small antral follicles. These data suggest that MXC metabolites inhibit follicle growth and induce atresia and that ER-regulated pathways may mediate the ovarian toxicity of MXC and its metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfl034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!