Fatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders. In an effort to discover FAAH inhibitors, the authors have previously reported the development of a novel fluorescent assay using purified FAAH microsomes as an enzyme source and a fluorogenic substrate, arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA). Herein, the authors have adapted this assay to a high-throughput format and have screened a large library of small organic compounds, identifying a number of novel FAAH inhibitors. These data further verify that this fluorescent assay is sufficiently robust, efficient, and low-cost for the identification of FAAH inhibitory molecules and open this class of enzymes for therapeutic exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057106288188DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
fluorescent assay
12
acid amide
8
amide hydrolase
8
endogenous bioactive
8
bioactive lipids
8
faah inhibitors
8
faah
6
high-throughput screening
4
screening discovery
4

Similar Publications

Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size effects.

Angew Chem Int Ed Engl

December 2024

Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.

View Article and Find Full Text PDF

Immunotherapy, which uses the body's immune system to fight cancer cells, has gained attention recently as a breakthrough in cancer treatment. Although significant progress has been made, obstacles still exist since cancers are skilled at avoiding immune monitoring. The gut microbiota is being looked at more and more in modern research as a critical component in improving the results of immunotherapy.

View Article and Find Full Text PDF

Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.

View Article and Find Full Text PDF

Aims/introduction: Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!