Cytochrome c-oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in the regulation of aerobic production of energy. Biogenesis of eukaryotic COX involves the coordinated action of two genomes. Three mitochondrial DNA-encoded subunits form the catalytic core of the enzyme, which contains metal prosthetic groups. Another 10 subunits encoded in the nuclear DNA act as a protective shield surrounding the core. COX biogenesis requires the assistance of >20 additional nuclear-encoded factors acting at all levels of the process. Expression of the mitochondrial-encoded subunits, expression and import of the nuclear-encoded subunits, insertion of the structural subunits into the mitochondrial inner membrane, addition of prosthetic groups, assembly of the holoenzyme, further maturation to form a dimer, and additional assembly into supercomplexes are all tightly regulated processes in a nuclear-mitochondrial-coordinated fashion. Such regulation ensures the building of a highly efficient machine able to catalyze the safe transfer of electrons from cytochrome c to molecular oxygen and ultimately facilitate the aerobic production of ATP. In this review, we will focus on describing and analyzing the present knowledge about the different regulatory checkpoints in COX assembly and the dynamic relationships between the different factors involved in the process. We have used information mostly obtained from the suitable yeast model, but also from bacterial and animal systems, by means of large-scale genetic, molecular biology, and physiological approaches and by integrating information concerning individual elements into a cellular system network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00233.2006 | DOI Listing |
Commun Biol
January 2025
Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
Background: Mild Cognitive Impairment (MCI) serves as a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid beta accumulation, underscoring the prospect of targeting mitochondrial function for intervention. Consequently, our study aimed to explore the efficacy of transcranial photobiomodulation (tPBM), a novel non-invasive technique utilizing near-infrared light to activate mitochondrial cytochrome C oxidase receptors, thereby enhancing cellular energy in individuals with MCI.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Laboratory of Diagnosis and Integrated Management of Plant Bio-Aggressors. University of Parakou, BP123 Parakou, Borgou, Benin.
Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.
View Article and Find Full Text PDFJ Am Mosq Control Assoc
January 2025
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!