The physiological function of 5-HT(7) receptors is not yet fully determined. This study was designed to characterize the involvement of 5-HT(7) receptor in rat body temperature regulation and in adrenocorticotropic hormone (ACTH) and corticosterone secretion. In the first part of our study, acute administration of SB-269970 (0.1-1 mg/kg, i.p.), a potent and selective 5-HT(7) receptors antagonist, dose-dependently prevented 5-HT(1A/7) receptor agonist 8-OH-DPAT (0.1 mg/kg, s.c.)-induced hypothermia and when the 5-HT(1A) receptor antagonist WAY-100,635 was co-injected with SB-269970, a reduction of the latter hypothermia was obtained in an additive manner. In contrast, 1 mg/kg (i.p.) of SB-269970 failed to prevent 8-OH-DPAT (0.5 mg/kg, s.c.)-induced increase of ACTH and corticosterone plasma levels. In conclusion, the present results unveil an additive effect of both 5-HT(1A) and 5-HT(7) receptors in core body temperature regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2006.05.023DOI Listing

Publication Analysis

Top Keywords

5-ht7 receptors
12
5-ht7 receptor
8
receptor antagonist
8
5-ht1a/7 receptor
8
receptor agonist
8
agonist 8-oh-dpat
8
body temperature
8
temperature regulation
8
acth corticosterone
8
8-oh-dpat mg/kg
8

Similar Publications

Novel therapeutic approaches targeting 5-HT7 receptors outside the central nervous system.

J Recept Signal Transduct Res

January 2025

Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.

Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside.

View Article and Find Full Text PDF

Behavioral Consequences of Hippocampal 5-HT7 Receptors Blockade in Stressed Rats.

Hippocampus

January 2025

Laboratório de Neurobiologia Do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

Serotonin (5-HT) has long been involved in response to stress and its effect may be, in part, mediated by 5-HT1a and 5-HT7 receptor subtypes in different brain structures. Both pre- and post-synaptic activation of 5-HT1a receptor, respectively, in the rat median raphe nucleus (MnRN) and hippocampus, lead to adaptation to acute inescapable stressors such as restraint and forced swim. 5-HT7 receptor (5HT7r), a stimulatory G-protein coupled receptor, has also been investigated as a possible candidate for mediating stress response.

View Article and Find Full Text PDF
Article Synopsis
  • * An evaluation of 88 phytochemicals identified five (Genistein, Kaempferol, Daidzein, Peonidin, and glycitein) with strong pharmacokinetic properties and effective binding to serotonin receptors.
  • * The study suggests these phytochemicals, commonly found in soybeans and various plants, could lead to natural depression treatments, but more research is needed to confirm their effectiveness in real-world applications.
View Article and Find Full Text PDF

Background: Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic.

View Article and Find Full Text PDF

The first of our aims in this study was to investigate the effects of 5-HT2AR, 5-HT7R, and A2AR blockades on miR-27b-3p expression in the short and long-term in neuroblastoma cells. Our second aim was to reduce the expression of pERK and suppress proliferation by blocking the 5-HT2AR with ketanserin. Our third aim was to reduce the expression of pAKT and induce apoptosis by blocking the A2AR and 5-HT7R with MSX3 and SB269970.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!