Undulatory locomotion is common to nematodes as well as to limbless vertebrates, but its control is not understood in spite of the identification of hundred of genes involved in Caenorhabditis elegans locomotion. To reveal the mechanisms of nematode undulatory locomotion, we quantitatively analysed the movement of C. elegans with genetic perturbations to neurons, muscles, and skeleton (cuticle). We also compared locomotion of different Caenorhabditis species. We constructed a theoretical model that combines mechanics and biophysics, and that is constrained by the observations of propulsion and muscular velocities, as well as wavelength and amplitude of undulations. We find that normalized wavelength is a conserved quantity among wild-type C. elegans individuals, across mutants, and across different species. The velocity of forward propulsion scales linearly with the velocity of the muscular wave and the corresponding slope is also a conserved quantity and almost optimal; the exceptions are in some mutants affecting cuticle structure. In theoretical terms, the optimality of the slope is equivalent to the exact balance between muscular and visco-elastic body reaction bending moments. We find that the amplitude and frequency of undulations are inversely correlated and provide a theoretical explanation for this fact. These experimental results are valid both for young adults and for all larval stages of wild-type C. elegans. In particular, during development, the amplitude scales linearly with the wavelength, consistent with our theory. We also investigated the influence of substrate firmness on motion parameters, and found that it does not affect the above invariants. In general, our biomechanical model can explain the observed robustness of the mechanisms controlling nematode undulatory locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2006.04.012 | DOI Listing |
Bioinspir Biomim
November 2024
The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, CAS, Beijing 100190, People's Republic of China.
The robotic fish utilizes a bio-inspired undulatory propulsion system to achieve high swimming performance. However, significant roll motion has been observed at the head when the tail oscillates at certain frequencies, adversely affecting both perception accuracy and propulsion efficiency. In this paper, the roll torque acting on the robotic fish is theoretically analyzed and decomposed into gravitational, inertial, and hydrodynamic components.
View Article and Find Full Text PDFCurr Biol
October 2024
Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France. Electronic address:
Soft Robot
October 2024
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, P. R. China.
The unique rigid-flex connection between the fin-rays and fin-surface in a bionic undulatory fin robot endows the fin-surface with both active flexibility and load-bearing capacity, enabling this robot to perform amphibious motions in underwater, terrestrial, and even marshy environments. However, investigations into dynamic modeling problems for the undulatory fin robot, considering the impact of nonlinear deformation and frictional contact on ground locomotion performance, are scarce. Given this, based on the absolute nodal coordinate formulation (ANCF), this paper presents an efficient and accurate nonlinear dynamic model for this robot to elucidate the fin's flexible deformation and motion law.
View Article and Find Full Text PDFJ Exp Biol
November 2024
School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK.
Escape jet propulsion swimming in cuttlefish (Sepia officinalis) is powered by the circular muscles surrounding the mantle cavity. This mode of locomotion is energetically costly compared with undulatory swimming. The energetic cost of swimming is determined by the mechanical power requirements and the efficiency with which chemical energy is transferred into useful mechanical work.
View Article and Find Full Text PDFOrganisms that locomote by propagating waves of body bending can maintain performance across heterogeneous environments by modifying their gait frequency $\omega$ or wavenumber $k$. We identify a unifying relationship between these parameters for overdamped undulatory swimmers (including nematodes, spermatozoa, and mm-scale fish) moving in diverse environmental rheologies, in the form of an active `dispersion relation' $\omega\propto k^{\pm2}$. A model treating the organisms as actively driven viscoelastic beams reproduces the experimentally observed scaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!