The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-0436.2006.00071.x | DOI Listing |
Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells.
View Article and Find Full Text PDFArch Virol
January 2025
Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Bahía Blanca, Buenos Aires, Argentina.
Neurodegenerative pathologies such as age-related macular degeneration currently have no cure or effective treatment. In this type of disease, the presence of amyloid-β peptides, oxidative stress, and inflammation trigger dysregulation of retinal pigment epithelial cells and progression toward the death of these cells, resulting in a loss of vision. The production of amyloid-β peptides, oxidative stress, and inflammation can be triggered in response to viral infections.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Beijing100191, China.
FEMS Microbiol Lett
January 2025
Department of Innovation Systems Engineering, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
Burkholderia gladioli produces a yellow-pigmented toxin called toxoflavin, and causes disease on a variety of plants. Previous studies have suggested that the pathogenicity of B. gladioli is regulated by an N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing (QS) system.
View Article and Find Full Text PDFJ Drugs Dermatol
January 2025
Background: Exosomes are small extracellular vesicles (30-150 nm in size) that play a critical role in cellular communication, transporting proteins, lipids, and nucleic acids between cells. This literature review focuses on evaluating the potential benefits and limitations of exosomes in enhancing skin health and aesthetics through indications such as skin rejuvenation, hair restoration, and pigmentation disorders.
Methods: A thorough literature search was conducted on PubMed using specific MeSH, including "exosomes," "aesthetics," "cosmetic dermatology," "skin rejuvenation," "hair growth," and "wrinkle reduction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!