Several neurological disorders manifest symptoms that result from the degeneration and death of specific neurons. p53 is an important modulator of cell death, and its inhibition could be a therapeutic approach to several neuropathologies. Here, we report the design, synthesis, and biological evaluation of novel p53 inhibitors based on the imino-tetrahydrobenzothiazole scaffold. By performing studies on their mechanism of action, we find that cyclic analogue 4b and its open precursor 2b are more potent than pifithrin-alpha (PFT-alpha), which is known to block p53 pro-apoptotic activity in vitro and in vivo without acting on other pro-apoptotic pathways. Using spectroscopic methods, we also demonstrate that open form 2b is more stable than 4b in biological media. Compound 2b is converted into its corresponding active cyclic form through an intramolecular dehydration process and was found two log values more active in vivo than PFT-alpha. Thus, 2b can be considered as a new prodrug prototype that prevents in vivo p53-triggered cell death in several neuropathologies and possibly reduces cancer therapy side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm060318nDOI Listing

Publication Analysis

Top Keywords

p53 inhibitors
8
cell death
8
imino-tetrahydro-benzothiazole derivatives
4
p53
4
derivatives p53
4
inhibitors discovery
4
discovery highly
4
highly potent
4
vivo
4
potent vivo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!