This work is concerned with the metabolism of Caldithrix abyssi-an anaerobic, moderately thermophilic bacterium isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge and representing a new, deeply deviated branch within the domain Bacteria. Cells of C. abyssi grown on acetate and nitrate, which was reduced to ammonium, possessed nitrate reductase activity and contained cytochromes of the b and c types. Utilization of acetate occurred as a result of the operation of the TCA and glyoxylate cycles. During growth of C. abyssi on yeast extract, fermentation with the formation of acetate, propionate, hydrogen, and CO2 occurred. In extracts of cells grown on yeast extract, acetate was produced from pyruvate with the involvement of the following enzymes: pyruvate:ferredoxin oxidoreductase (2.6 micromol/(min mg protein)), phosphate acetyltransferase (0.46 micromol/(min mg protein)), and acetate kinase (0.3 micromol/(min mg protein)). The activity of fumarate reductase (0.14 micromol/(min mg protein)), malate dehydrogenase (0.17 micromol/(min mg protein)), and fumarate hydratase (1.2 micromol/(min mg protein)), as well as the presence of cytochrome b, points to the formation of propionate via the methyl-malonyl-CoA pathway. The activity of antioxidant enzymes (catalase and superoxide dismutase) was detected. Thus, enzymatic mechanisms have been elucidated that allow C. abyssi to switch from fermentation to anaerobic respiration and to exist in the gradient of redox conditions characteristic of deep-sea hydrothermal vents.
Download full-text PDF |
Source |
---|
Physiol Res
June 2018
Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Renal medullary endothelin B receptors (ET(B)) mediate sodium excretion and blood pressure (BP) control. Several animal models of hypertension have impaired renal medullary ET(B) function. We found that 4-week high-caloric diet elevated systolic BP in Dahl salt-sensitive (Dahl S) rats (126+/-2 vs.
View Article and Find Full Text PDFObjective: L-isoleucine-4-hydroxylase (IDO) encoding gene ido from Bacillus thuringiensis TCCC 11826 was cloned and expressed, followed by enzyme characterization. In addition, recombinant strain was tested for its 4-Hydroxyisoleucine (4-HIL) biotransformation.
Methods: Ido gene was amplified from B.
Prikl Biokhim Mikrobiol
October 2014
The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80 degrees C and 7.
View Article and Find Full Text PDFRecombinant full-length urease gene cluster and seven 100% deletion recombinant variants of urease subunits genes, (ureG, ureH, ureA, ureB, ureC, ureE and ureF) were constructed in vitro from the Campylobacter sputorum biovar paraureolyticus LMG17591 strain and expressed in Escherichia coli JM109 cells. A urease-positive reaction (1.885 micromol/min/mg protein) in the log-phase cultured E.
View Article and Find Full Text PDFUkr Biokhim Zh (1999)
February 2014
The substrate specificity of Cryptococcus albidus and Eupenicillium erubescens alpha-L-rhamnosidases has been investigated. It is shown that the enzymes are able to act on synthetic and natural substrates, such as naringin, neohesperidin. alpha-L-Rhamnosidases hydrolysed the latter ones very efficiently, in this case E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!