Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To better understand the effect of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer in improving the biocompatibility of segmented polyurethane (SPU), the expression of heat shock protein (HSP) mRNA in HeLa S3 cells adhered on SPU blended with MPC copolymers was measured. Conventionally, MPC copolymers (PMEH) were synthesized by changing the feed ratios of MPC and 2-ethylhexyl methacrylate. X-ray photoelectron spectroscopic analysis of the SPU/PMEH film indicated that the surface concentration of MPC units on the SPU/PMEH film increased with an increase in PMEH composition. HeLa S3 cells were cultured on SPU/PMEH films. The number of adherent cells on the SPU/PMEH films decreased with an increase in the concentration of PMEH. When the PMEH composition was greater than 0.5 wt %, cell adhesion and proliferation decreased markedly. Expressions of HSP27 and HSP47 mRNA were detected using the reverse transcription-polymerase chain reaction (RT-PCR). After incubation for 24 h, both the HSP mRNA expressions in the HeLa S3 cells showed no significant differences among all samples. In HeLa S3 cells that adhered to the SPU film for 48 h, the expressions of HSP27 and HSP47 mRNA increased significantly when compared with those incubated for 24 h. In contrast, the two kinds of mRNA expressions decreased in the HeLa S3 cells that adhered to the SPU/PMEH films for 48 h. From these results, we concluded that PMEH was quite important in suppressing the stress response of adherent HeLa S3 cells. Therefore, SPU/PMEH blend polymers are useful as implantable biomedical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.30820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!