The sperm interacts with three oocyte-associated structures during fertilization: the cumulus cell layer surrounding the oocyte, the egg extracellular matrix (the zona pellucida), and the oocyte plasma membrane. Each of these interactions is mediated by the sperm head, probably through proteins both on the sperm surface and within the acrosome, a specialized secretory granule. In this study, we have used subcellular fractionation in order to generate a proteome of the sperm head subcellular compartments that interact with oocytes. Of the proteins we identified for which a gene knockout has been tested, a third have been shown to be essential for efficient reproduction in vivo. Many of the other presently untested proteins are likely to have a similarly important role. Twenty-five percent of the cell surface fraction proteins are previously uncharacterized. We have shown that at least two of these novel proteins are localized to the sperm head. In summary, we have identified over 100 proteins that are expressed on mature sperm at the site of sperm-oocyte interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200500845DOI Listing

Publication Analysis

Top Keywords

sperm head
12
sperm
7
proteins
6
proteomic analysis
4
analysis sperm
4
sperm regions
4
regions mediate
4
mediate sperm-egg
4
sperm-egg interactions
4
interactions sperm
4

Similar Publications

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Oligoasthenoteratozoospermia (OAT) is a common cause of infertility among males, and the majority of cases of idiopathic OAT are thought to be attributed to genetic defects. In this study, the role of the CEP78 protein in spermatogenesis was initially investigated using Cep78 knockout (Cep78) mice. Notably, the male Cep78 mice exhibited the OAT phenotype and sterility.

View Article and Find Full Text PDF

Background: 95% of men with spinal cord injuries exhibit difficulties with sexual function, including erectile dysfunction, anejaculation, retrograde ejaculation, poor ejaculatory force, and poor sperm quality.

Aim: The primary goal is to determine if well-established interventions, such as spinal cord epidural stimulation, are a feasible treatment for sexual dysfunction and if locomotor recovery training can be used to improve ejaculatory function in a rodent model of spinal cord injury (SCI).

Methods: Male Wistar rats underwent thoracic laminectomies (shams), spinal cord transections, or moderate spinal cord contusion injuries.

View Article and Find Full Text PDF

Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin (Que) and Que nanoparticles against imidacloprid (IMI)-induced genotoxicity in Swiss albino mice.

Methods: The ionic gelation procedure was used to synthesize the Que nanoparticles and characterized for their hydrodynamic diameter, zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, and encapsulation efficiency. A total of 48 mice were taken in eight groups with six animals in each group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!