The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b604039jDOI Listing

Publication Analysis

Top Keywords

geometric isomer
8
photocrystallographic structure
4
structure determination
4
determination geometric
4
isomer [runh34h2oeta1-oso][mec6h4so3]2
4
[runh34h2oeta1-oso][mec6h4so3]2 structure
4
structure metastable
4
metastable geometric
4
isomer [runh34h2oso2][mec6h4so3]2
4
[runh34h2oso2][mec6h4so3]2 so2
4

Similar Publications

Spectroscopy and Dynamics of the Dipole-Bound States of -, -, and -Methylphenolate Anions.

J Phys Chem A

December 2024

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.

A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.

View Article and Find Full Text PDF

Detailed DFT studies of H and C NMR chemical shifts of hydroxy secondary oxidation products of various geometric isomers of conjugated linolenic acids methyl esters are presented. Several low energy conformers were identified for model compounds of the central dienenol OH moiety, which were found to be practically independent on the various functionals and basis sets used. This greatly facilitated the minimization process of the geometric isomers of conjugated linolenic acids methyl esters.

View Article and Find Full Text PDF

Boosting Photovoltaic Efficiency: The Role of Functional Group Distribution in Perovskite Film Passivation.

Small

December 2024

Science and Education Integration College of Energy and Carbon Neutralization, College of Materials Science and Engineering, Zhejiang Provincial Key Laboratory of Clean Energy Conversion and Utilization, Zhejiang University of Technology, Hangzhou, 310014, China.

The utilization of small organic molecules with appropriate functional groups and geometric configurations for surface passivation is essential for achieving efficient and stable perovskite solar cells (PSCs). In this study, two isomers, 4-sulfonamidobenzoic acid (4-SA) and 3-sulfamobenzoic acid (3-SA), both featuring sulfanilamide and carboxyl functional groups arranged in different positions, are evaluated for their effectiveness in passivating defects of the perovskite layer. The calculation and characterization results reveal that 3-SA, with its meta-substitution, offered superior passivation compared to the para-substituted 4-SA, leading to enhanced charge carrier dynamics and extraction efficiency.

View Article and Find Full Text PDF

We obtained the photoelectron spectra of Rh(CN) using the negative ion photoelectron velocity-map imaging (NI-PEVMI) technique and revealed the photodesorption process of Rh(CN). The vertical detachment energy (VDE) and adiabatic detachment energy (ADE) of Rh(CN) have both been experimentally reported to be 2.04 (3) eV.

View Article and Find Full Text PDF

Introduction: Liquid chromatography-mass spectrometry (LC-MS) has enhanced the rapid, accurate analysis of complex plant extracts, eliminating the need for extensive isolation. Tandem mass spectrometry (MS/MS) further enhances this process by providing detailed structural information. However, differentiating structural isomers remains a challenge due to their minor spectral and structural differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!