Ammonium citratoperoxotitanate IV (TAS-FINE) is a water-soluble titanium complex used to synthesize a photocatalytic titanium(IV) oxide film. This study was aimed to investigate the LD50, dose-response, time-course response, and renal toxicity of TAS-FINE using an animal model. Serum titanium (S-Ti) and its 24-h urinary excretion (U-Ti) were determined by inductively coupled plasma-argon emission spectrometry (ICPAES) after a single oral TAS-FINE administration to male Wistar rats. The LD50 of TAS-FINE was 7.97 g/kg body weight in 24 h, and its half-life was 3.78+/-1.28 d for S-Ti and 2.19+/-0.09 d for U-Ti. Although TAS-FINE was not easily absorbed in the gastrointestinal tract, it was distributed into the bloodstream in a dose-dependent manner. Within 24 h, 0.189% of administrated Ti was excreted via urine. It was speculated that TAS-FINE formed conjugates with serum constituents that resulted in nephrotoxicity resulting from an allergic reaction. The observed indices in this study were revealed to be good indicators for TAS-FINE exposure. The analytical method and animal model described in this study will help to further elucidate details about human exposure to TAS-FINE, which in recent times has become an occupational and environmental toxicant of concern.

Download full-text PDF

Source
http://dx.doi.org/10.1385/bter:110:2:119DOI Listing

Publication Analysis

Top Keywords

serum titanium
8
ammonium citratoperoxotitanate
8
tas-fine
8
animal model
8
urinary serum
4
titanium assessment
4
assessment indicator
4
indicator exposure
4
exposure ammonium
4
citratoperoxotitanate influence
4

Similar Publications

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.

View Article and Find Full Text PDF

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) patients show significantly higher concentrations of heavy metals like arsenic, nickel, manganese, and zinc in their stool compared to healthy individuals, while levels of iron, lead, titanium, and tin are notably lower.
  • The study also reveals alterations in the gut microbiome of MS patients, with increased abundance of certain bacterial families indicative of potential changes associated with the disease.
  • The research highlights a novel approach by combining heavy metal measurement and gut microbiome analysis, suggesting new insights into the disease's pathogenesis and possible therapeutic strategies.
View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!