The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. Understanding these regulatory mechanisms is important for assessing the reproductive effects of environmental and pharmaceutical androgenic and antiandrogenic compounds. A mathematical model for the dynamics of androgenic synthesis, transport, metabolism, and regulation of the adult rodent ventral prostate was developed on the basis of a model by Barton and Anderson (1997). The model describes the systemic and local kinetics of testosterone (T), 5alpha-dihydrotestosterone (DHT), and luteinizing hormone (LH), with metabolism of T to DHT by 5alpha-reductase in liver and prostate. Also included are feedback loops for the positive regulation of T synthesis by LH and negative regulation of LH by T and DHT. The model simulates maintenance of the prostate as a function of hormone concentrations and androgen receptor (AR)-mediated signal transduction. The regulatory processes involved in prostate size and function include cell proliferation, apoptosis, fluid production, and 5alpha-reductase activity. Each process is controlled through the occupancy of a representative gene by androgen-AR dimers. The model simulates prostate dynamics for intact, castrated, and intravenous T-injected rats. After calibration, the model accurately captures the castration-induced regression of the prostate compared with experimental data that show that the prostate regresses to approximately 17 and 5% of its intact weight at 14 and 30 days postcastration, respectively. The model also accurately predicts serum T and AR levels following castration compared with data. This model provides a framework for quantifying the kinetics and effects of environmental and pharmaceutical endocrine active compounds on the prostate.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00545.2005DOI Listing

Publication Analysis

Top Keywords

prostate
9
mathematical model
8
intact castrated
8
effects environmental
8
environmental pharmaceutical
8
model
8
model simulates
8
model accurately
8
model androgenic
4
regulation
4

Similar Publications

Effect of repeated semen ejaculation on sperm quality and selected biochemical markers of canine semen.

Pol J Vet Sci

June 2024

Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn-Kortowo, Poland.

The aim of this study was to evaluate the quality parameters and selected biochemical markers of canine semen sampled at 24-h intervals over a period of 5 days, preceded by 6 months of sexual abstinence. Full ejaculates were obtained from 6 dogs. Ejaculate volume and total sperm counts in the ejaculate decreased gradually on successive sampling days.

View Article and Find Full Text PDF

Immunohistochemical Detection of CD147 Expression in Adenocarcinoma of the Prostate: A Case-Control Study.

Prostate Cancer

December 2024

Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan.

Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) was the most common noncutaneous cancer among Nigerian men in 2020. Despite this high incidence, documented rates may be an underestimation.

Objectives: This study aimed to determine the hospital incidence rate, trends, and characterise the clinicopathologic features, and treatment outcomes of patients with PCa in our institution.

View Article and Find Full Text PDF

Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.

Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .

Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!