Freeze-drying is commonly used to stabilize lactic acid bacteria. Many factors have been reported to influence freeze-drying survival, including bacterial species, cell density, lyoprotectant, freezing rate, and other process parameters. Lactobacillus coryniformis Si3 has broad antifungal activity and a potential use as a food and feed biopreservative. This strain is considered more stress sensitive, with a low freeze-drying survival, compared to other commercialized antifungal lactic acid bacterial strains. We used a response surface methodology to evaluate the effects of varying sucrose concentration, cell density and freezing rate on Lb. coryniformis Si3 freeze-drying survival. The water activity of the dry product, as well as selected thermophysical properties of importance for freeze-drying; degree of water crystallization and the glass transition temperature of the maximally freeze concentrated amorphous phase (Tg') were determined. The survival of Lb. coryniformis Si3 varied from less than 6% to over 70% between the different conditions. All the factors studied influenced freeze-drying survival and the most important factor for survival is the freezing rate, with an optimum at 2.8 degrees C/min. We found a co-dependency between freezing rate and formulation ingredients, indicating a complex system and the need to use statistical tools to detect important interactions. The degree of water crystallization decreased and the final water activity increased as a function of sucrose concentration. The degree of water crystallization and Tg' was not affected by the addition of 10(8)-10(10) CFU/ml. At 10(11) CFU/ml, these thermophysical values decreased possibly due to increased amounts of cell-associated unfrozen water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cryobiol.2006.04.003 | DOI Listing |
Hum Reprod
December 2024
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Study Question: Is there a difference in the cumulative live birth rate (CLBR) after fresh testicular sperm aspiration (TESA) compared with the use of either pre-frozen sperm or oocyte freezing for couples experiencing ejaculation failure on the day of oocyte retrieval?
Summary Answer: After adjusting for confounding factors, the use of pre-frozen sperm or the freezing and thawing of oocytes appeared to be as effective as TESA in achieving CLBRs for couples experiencing temporary ejaculation failure.
What Is Known Already: Male patients may be concerned about experiencing temporary ejaculation failure on the day of their partner's oocyte retrieval, in which case they may choose surgical sperm retrieval, oocyte freezing on the day, or have their sperm frozen in advance. However, the clinical efficacy of these three options has not yet been evaluated.
Adv Mater
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Clinics, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal-637 001, India.
The aim of this study was to assess the in vitro penetration rate of antioxidant enriched frozen thawed Kangayam bull semen. For the current investigation, 5-7-year-old Kangayam bulls were used. The semen was collected twice per week and two ejaculates were collected each time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!