Biosensor measurements of polar phenolics for the assessment of the bitterness and pungency of virgin olive oil.

J Agric Food Chem

Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.

Published: June 2006

Bitterness and pungency, sensory quality attributes of virgin olive oil, are related to the presence of phenolic compounds. Fast and reliable alternatives for the evaluation of sensory attributes and phenolic content are desirable, as sensory and traditional analytical methods are time-consuming and expensive. In this study, two amperometric enzyme-based biosensors (employing tyrosinase or peroxidase) for rapid measurement of polar phenolics of olive oil were tested. The biosensor was constructed using disposable screen-printed carbon electrodes with the enzyme as biorecognition element. The sensor was coupled with a simple extraction procedure and optimized for use in flow injection analysis. The performance of the biosensor was assessed by measuring a set of virgin olive oils and comparing the results with data obtained by the reference HPLC method and sensory scores. The correlations between the tyrosinase- and peroxidase-based biosensors and phenolic content in the samples were high (r = 0.82 and 0.87, respectively), which, together with a good repeatability (rsd = 6%), suggests that these biosensors may represent a promising tool in the analysis of the total content of phenolics in virgin olive oils. The correlation with sensory quality attributes of virgin olive oil was lower, which illustrates the complexity of sensory perception. The two biosensors possessed different specificities toward different groups of phenolics, affecting bitterness and pungency prediction. The peroxidase-based biosensor showed a significant correlation (r = 0.66) with pungency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf060103mDOI Listing

Publication Analysis

Top Keywords

virgin olive
20
olive oil
16
bitterness pungency
12
polar phenolics
8
sensory quality
8
quality attributes
8
attributes virgin
8
phenolic content
8
olive oils
8
olive
6

Similar Publications

High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.

View Article and Find Full Text PDF

Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.

View Article and Find Full Text PDF

Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted.

View Article and Find Full Text PDF

This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.

View Article and Find Full Text PDF

In this article, we present a unique system for identifying edible oils through the analysis of their thermophysical properties. The method is based on the use of active infrared thermography. The heating of the oils results from the optical absorption of laser radiation at a specified wavelength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!