Unlabelled: Magnetic resonance (MR) diagnosis of regional left ventricular (LV) dysfunction relies on visual interpretation of cine images that suffers from wide inter-observer variability, especially when performed by readers not specifically trained in the assessment of LV wall motion. Quantitative analysis tools, though widely available, are rarely used because they provide large amounts of detailed information, the interpretation of which requires additional time-consuming processing. We tested the feasibility of fast automated interpretation of regional LV function using computer analysis of this wall motion information.

Methods: Dynamic, ECG-gated, steady-state free precession short-axis images were obtained in 6-10 slices in 28 subjects (10 normal volunteers; 18 patients). Images were reviewed by an expert cardiologist who provided "gold standard" grades (normal, abnormal) for regional wall motion and, independently, by four radiologists. Same images were then analyzed using custom software. Regional fractional area changes computed in normal volunteers were used to obtain the optimal segment- and slice-specific threshold values for automated classification of regional wall motion for each patient. The levels of agreement with the "gold standard" grades were compared between the radiologists and the automated interpretation.

Results: While the visual interpretation required 2-5 minute per patient, the automated interpretation required < 1 sec, after endocardial border detection was complete. The automated interpretation resulted in higher sensitivity, specificity, and accuracy (84%, 77%, 79%, respectively) than the radiologists' grades (80%, 76%, 77%, respectively) and eliminated the high interobserver variability.

Conclusion: Once the endocardial boundaries are defined, computer analysis of the regional wall motion information allows accurate, fully automated, immediate, objective and experience-independent interpretation of regional LV function.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10976640600599486DOI Listing

Publication Analysis

Top Keywords

wall motion
24
automated interpretation
16
interpretation regional
12
regional wall
12
regional
8
regional left
8
left ventricular
8
magnetic resonance
8
visual interpretation
8
regional function
8

Similar Publications

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

In order to figure out the wall effect on the propulsive property of an auto-propelled foil, the commercial open-source code ANSYS Fluent was employed to numerically evaluate the fluid dynamics of flexible foil under various wall distances. A virtual model of NACA0015 foil undergoing travelling wavy motion was adopted, and the research object included 2D and 3D models. To capture the foil's moving boundary, the dynamic grid technique coupled with the overlapping grid was utilized to realize the foil's positive deformation and passive forward motion.

View Article and Find Full Text PDF

Background: Coronary heart disease the most prevalent form of cardiovascular disease, results from the blockage of blood flow through arteries. The Myocardial Perfusion Scan (MPS) is considered a non-invasive method to assess the heart condition and provides valuable information, such as End Diastolic Volume (EDV), End Systolic Volume (ESV), Ejection Fraction (EF), Lung to Heart Ratio (LHR), and Transient Ischemic Dilatation (TID).

Objective: This study aimed to investigate changes in gated heart scan parameters to diagnose patients, who are candidates for heart surgery.

View Article and Find Full Text PDF

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Objectives: The enormous burden that cardiovascular diseases put on individuals and societies warrants reliable biomarkers of disease risk to optimize disease prevention. We studied longitudinal movement (LMov) in arterial walls using ultrasound of the common carotid artery (CCA). We believe that LMov could be a sensitive biomarker of cardiovascular health and in this study, we evaluate the intra-observer repeatability and inter-observer precision of our method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!