In order to understand elongator tRNA(Ser) and suppressor tRNA(Sec) identity elements, the respective acceptor-stem helices have been synthesized and crystallized in order to analyse and compare their structures in detail at high resolution. The synthesis, crystallization and preliminary X-ray diffraction results for a seven-base-pair tRNA(Ser) acceptor-stem helix are presented here. Diffraction data were collected to 1.8 A, applying synchrotron radiation and cryogenic cooling. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 36.14, b = 38.96, c = 30.81 A, beta = 110.69 degrees .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243086PMC
http://dx.doi.org/10.1107/S1744309106016472DOI Listing

Publication Analysis

Top Keywords

crystallization preliminary
8
preliminary x-ray
8
x-ray diffraction
8
trnaser acceptor-stem
8
diffraction analysis
4
analysis trnaser
4
acceptor-stem microhelix
4
microhelix order
4
order understand
4
understand elongator
4

Similar Publications

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties.

Eur J Med Chem

December 2024

School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK. Electronic address:

Aryl quinolone derivatives can target the cytochrome bc complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives.

View Article and Find Full Text PDF

The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.

View Article and Find Full Text PDF

Crystallization and preliminary X-ray crystallographic studies of AfeH from Acimetobacter sp. DL-2.

Acta Crystallogr F Struct Biol Commun

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.

Fenoxaprop-P-ethyl (FE) is widely applied as a post-emergence aryloxyphenoxy propionate (AOPP) herbicide in agriculture. A novel FE hydrolase esterase from Acinetobacter sp. DL-2 (AfeH) was identified which belongs to the family IV carboxylesterases and shows less than 30% identity to other reported homologues with known structure.

View Article and Find Full Text PDF

In our preliminary studies, the extract demonstrated inhibition of calcium phosphate (brushite) crystals. Human serum albumin (HSA) is known to act as a promoter of brushite crystal growth. Therefore, the present study aims to explore the molecular mechanisms involved in brushite crystal nephrolithiasis by conducting molecular docking of phytoconstituents from with HSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!