In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2-7 (Mcm2-7). The number of Mcm2-7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2-7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2-7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063885 | PMC |
http://dx.doi.org/10.1083/jcb.200602108 | DOI Listing |
The six subunit Origin Recognition Complex (ORC) loads excess MCM2-7 on chromosomes to promote initiation of DNA replication and is believed to be important for origin specification. Mapping of origins in cancer cell lines engineered to delete three of the subunits, , or shows that specific origins are still used and are mostly at the same sites in the genome as in wild type cells. The few hundred origins that were up-regulated in the absence of ORC suggest that GC/TA skewness and simple repeat sequences facilitate, but are not essential for, origin selection in the absence of the six-subunit ORC.
View Article and Find Full Text PDFBiochem Soc Trans
June 2023
Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.
The mini-chromosome maintenance proteins 2-7 (MCM2-7) hexamer is a protein complex that is key for eukaryotic DNA replication, which occurs only once per cell cycle. To achieve DNA replication, eukaryotic cells developed multiple mechanisms that control the timing of the loading of the hexamer onto chromatin and its activation as the replicative helicase. MCM2-7 is highly abundant in proliferating cells, which confers resistance to replication stress.
View Article and Find Full Text PDFNat Commun
August 2022
Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA.
The minichromosome maintenance (MCM) 8/9 helicase is a AAA complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks.
View Article and Find Full Text PDFMol Biol Rep
September 2022
Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, 161006, Qiqihar, Heilongjiang, China.
Background: WASHC1 is a member of the Wiskott-Aldrich syndrome protein (WASP) family and is involved in endosomal protein sorting and trafficking through the generation of filamentous actin (F-actin) via activation of the Arp2/3 complex. There is increasing evidence that WASHC1 is present in the nucleus and nuclear WASHC1 plays important roles in regulating gene transcription, DNA repair as well as maintaining nuclear organization. However, the multi-faceted functions of nuclear WASHC1 still need to be clarified.
View Article and Find Full Text PDFNature
November 2020
Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!