Activator protein-1 (AP-1) is a crucial transcription factor implicated in numerous cancers. For this reason, nine homologues of the AP-1 leucine zipper region have been characterized: Fos (c-Fos, FosB, Fra1, and Fra2), Jun (c-Jun, JunB, and JunD), and semirational library-designed winning peptides FosW and JunW. The latter two were designed to specifically target c-Fos or c-Jun. They have been identified by using protein-fragment complementation assays combined with growth competition. This assay removes nonspecific, unstable, and protease susceptible library members from the pool, leaving winners with excellent drug potential. Thermal melts of all 45 possible dimeric interactions have been surveyed, with the FosW-c-Jun complex displaying a melting temperature (T(m)) of 63 degrees C, compared to only 16 degrees C for wild-type c-Fos-c-Jun interaction. This impressive 70,000-fold K(D) decrease is largely due to optimized core packing, alpha-helical propensity, and electrostatics. Contrastingly, due to a poor c-Fos core, c-Fos-JunW dimerizes with lower affinity. However the T(m) far exceeds wild-type c-Fos-c-Jun and averaged JunW and c-Fos, indicating a preference over either homodimer. Finally, and with wider implications, we have compiled a method for predicting interaction of parallel, dimeric coiled coils, using our T(m) data as a training set, and applying it to 59 bZIP proteins previously reported. Our algorithm, unlike others to date, accounts for helix propensity, which is found to be integral in coiled coil stability. Indeed, in applying the algorithm to these 59(2) bZIP interactions, we were able to correctly identify 92% of all strong interactions and 92% of all noninteracting pairs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482553PMC
http://dx.doi.org/10.1073/pnas.0509880103DOI Listing

Publication Analysis

Top Keywords

coiled coils
8
leucine zipper
8
wild-type c-fos-c-jun
8
semirational design
4
design jun-fos
4
jun-fos coiled
4
coils increased
4
increased affinity
4
affinity universal
4
universal implications
4

Similar Publications

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.

View Article and Find Full Text PDF

In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.

View Article and Find Full Text PDF

Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.

View Article and Find Full Text PDF

We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!