Tyrosine and glycine constitute 40% of complementarity determining region 3 of the immunoglobulin heavy chain (CDR-H3), the center of the classic antigen-binding site. To assess the role of D(H) RF1-encoded tyrosine and glycine in regulating CDR-H3 content and potentially influencing B cell function, we created mice limited to a single D(H) encoding asparagine, histidine, and arginines in RF1. Tyrosine and glycine content in CDR-H3 was halved. Bone marrow and spleen mature B cell and peritoneal cavity B-1 cell numbers were also halved, whereas marginal zone B cell numbers increased. Serum immunoglobulin G subclass levels and antibody titers to T-dependent and T-independent antigens all declined. Thus, violation of the conserved preference for tyrosine and glycine in D(H) RF1 alters CDR-H3 content and impairs B cell development and antibody production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212734PMC
http://dx.doi.org/10.1084/jem.20052217DOI Listing

Publication Analysis

Top Keywords

tyrosine glycine
16
impairs cell
8
cell development
8
development antibody
8
antibody production
8
cdr-h3 content
8
cell numbers
8
cell
6
cdr-h3
5
forced usage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!