Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced beta cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-mediated proton leak. In pancreatic islet cells, genipin increases mitochondrial membrane potential, increases ATP levels, closes K(ATP) channels, and stimulates insulin secretion. These actions of genipin occur in a UCP2-dependent manner. Importantly, acute addition of genipin to isolated islets reverses high glucose- and obesity-induced beta cell dysfunction. Thus, genipin and/or chemically modified variants of genipin are useful research tools for studying biological processes thought to be controlled by UCP2. In addition, these agents represent lead compounds that comprise a starting point for the development of therapies aimed at treating beta cell dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmet.2006.04.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!