The core binding sites for a multitude of transcription factors have been identified and characterized, but these sequences cannot fully account for the nuances of cell-specific and gene-specific control of gene transcription. Many factors may contribute to the precise responsiveness of a gene to a particular transcriptional regulatory protein, including the nucleotides in the proximity of the core binding site for that protein. Here, we examine two flanking sequences bordering a site in the gamma-fibrinogen gene regulatory region that binds a heterodimer of the Xenopus glucocorticoid receptor accessory factor (XGRAF) and the glucocorticoid receptor (GR). Mutation of the upstream flank results in a decrease in the level of XGRAF binding but little change in hormone induction. However, alteration of the downstream flank adjacent to the GR binding site causes a decrease in levels of both GR monomer binding and hormone induction. Conversion of the XGRAF-GR binding site to a full glucocorticoid response element (GRE) alters the role of the flanking sequences. A full GRE in this position requires the wild-type upstream flank to bind GR homodimer and induce transcription to maximal levels. In contrast, mutation of the downstream flank is not detrimental to either the binding or the function of the GR dimer. Thus, flanking sequence composition and dimer partner combine to influence GR function, underscoring the complexities involved in the identification of authentic transcription factor response elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517624PMC
http://dx.doi.org/10.1021/bi060314kDOI Listing

Publication Analysis

Top Keywords

glucocorticoid receptor
12
binding site
12
flanking sequence
8
sequence composition
8
binding
8
core binding
8
transcription factors
8
flanking sequences
8
upstream flank
8
hormone induction
8

Similar Publications

Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.

View Article and Find Full Text PDF

Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored.

View Article and Find Full Text PDF

Understanding a small molecule's mode of action (MoA) is essential to guide the selection, optimization and clinical development of lead compounds. In this study, we used high-throughput non-targeted metabolomics to profile changes in 2,269 putative metabolites induced by 1,520 drugs in A549 lung cancer cells. Although only 26% of the drugs inhibited cell growth, 86% caused intracellular metabolic changes, which were largely conserved in two additional cancer cell lines.

View Article and Find Full Text PDF

Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.

Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!