Carbon monoxide oxidation activator protein (CooA) is a dimeric carbon monoxide (CO) binding transcription factor that in the presence of CO promotes the transcription of genes involved in CO oxidation in Rhodospirillum rubrum. The off state (inactive) of Fe(II) CooA has His and Pro as the two axial heme ligands. In contrast, in the on state, which is active in DNA binding, the Pro ligand bond has been replaced by CO. This occurs by the transient loss of the Pro ligand, thus generating a pentacoordinate heme that can bind CO. The active on state of CooA has two major structural differences from the off state, in addition to the displacement of the Pro ligand by CO. There is a repositioning of long C helices at the dimer interface and a concomitant reorientation of the hinge region between the DNA- and effector-binding domains within each monomer [Roberts et al. (2005) J. Inorg. Biochem. 99, 280-292]. To better understand the relationship of these conformational changes, we have removed the DNA-binding domains and compared CO binding to the truncated and full-length protein. The crystal structure of truncated Fe(II) CooA is the same as that of the effector-binding domain of full-length Fe(II) CooA, including the relative orientation of the homodimer and the ligation environment of the heme. Thus, removing the DNA-binding domains has little obvious effect on the structure of CooA in the inactive off state. However, CO binds about 2-fold more tightly and about 10 times more rapidly to truncated CooA. The rate of CO binding is known to be limited by the dissociation of the Pro heme ligand [Puranik et al. (2004) J. Biol. Chem. 279, 21096-21108]. Therefore, the absence of the DNA-binding domain makes it easier for the Pro ligand to dissociate from the heme iron, which also makes it easier for truncated CooA to adopt the on-state structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi052609o | DOI Listing |
Acta Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China. Electronic address:
Metastasis and recurrence are the primary obstacles to long-term survival in colorectal cancer (CRC) patients. In this study, we employed single-cell RNA sequencing (scRNA-seq) to comprehensively delineate the transcriptomic landscape of primary and liver metastatic CRCs, and revealed novel cellular crosstalk between cancer cell subpopulation and myofibroblastic CAFs (myCAFs) at single-cell resolution. We identified a cancer cell subpopulation termed stem/transient amplifying-like (stem/TA-like) cells, which expressed genes associated with stem cell-like characteristics and metastatic potential.
View Article and Find Full Text PDFBrain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.
View Article and Find Full Text PDFThe maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFGastroenterology Res
December 2024
Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
Background: Immune checkpoint inhibitors (ICIs) have moved to the frontline in recent years to manage upper gastrointestinal (UGI) tumors, such as esophageal and gastric cancers. This retrospective review sheds light on real-world data on ICI-treated UGI tumors to identify risk factors (clinical and pathological) impacting the outcome other than traditional biomarkers (programmed cell death ligand 1 (PD-L1) or microsatellite instability status).
Methods: Patients with UGI tumors who received at least one dose of ICI for stage IV or recurrent disease between January 1, 2015, and July 31, 2021, at The Ohio State University were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!