Extraordinary high degrees of polar order can be achieved by a rational design that involves the polar stacking of parallel beloamphiphile monolayers (PBAM). This strategy is exemplified by the acetophenone azines MCA (4-methoxy-4'-chloroacetophenone azine) and DCA (4-decoxy-4'-chloroacetophenone azine). The beloamphiphile design aims to achieve strong lateral interactions by way of arene-arene, azine-azine, arene-azine and halogen-bonding interactions. Dipole-induced interactions and halogen bonding dominate interlayer interactions and halogen bonding is shown to effect the layer stacking. Crystals of DCA contain PBAMs with perfect polar order and perfect polar layer stacking, while crystals of MCA features perfect polar order only in one of two layers and layer stacking is polar but not entirely perfect. We report the synthesis of the beloamphiphile DCA, its crystal structure, and we present a comparative discussion of the structures and intermolecular interactions of MCA and DCA. Absorbance and photoluminescence measurements have been carried out for solutions of DCA and for DCA crystals. DCA exhibits a broad emission centered at 2.5 eV when excited with UV radiation. The nonlinear optical response was studied by measuring second harmonic generation (SHG). Strong SHG signals have been observed due to the polar alignment and the DCA crystal's NLO response is 34 times larger than that of urea. Optimization of the beloamphiphile and systematic SAR studies of the polar organic crystals, which are now possible for the very first time, will further improve the performance of this new class of functional organic materials. The materials are organic semiconductors and show promise as blue emitters, as nonlinear optical materials and as OLED materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b515739kDOI Listing

Publication Analysis

Top Keywords

perfect polar
16
polar order
12
layer stacking
12
dca
9
polar stacking
8
stacking parallel
8
parallel beloamphiphile
8
azine dca
8
polar
8
interactions halogen
8

Similar Publications

The brain in Spain: The legacy of Santiago Ramón y Cajal.

Neuroscientist

January 2025

Neurology Service, Lille Catholic Institute Hospital Group, (Groupe Hospitalier de l'Institut Catholique de Lille), GHICL, Lomme cedex, France.

The legacy of Santiago Ramón y Cajal, Spain's first Nobel laureate neuroscientist recognized as the founding father of modern neuroscience, is to be preserved in a new museum in Madrid: the National Museum of Natural Sciences (MNCN), one of the most important scientific research institutes in the country sciences in the scope of natural sciences of the Spanish National Research Council. For a boy who dreamed of being an artist but started his career apprenticed to first a barber and then a cobbler, Santiago Ramón y Cajal made a distinguished mark in science. One of Cajal's most important contributions to our understanding of the brain was his discovery of the direction of the information flow within neurons and in neural circuits, which he called the "dynamic polarization law," without a doubt the founding principle of neurosciences.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

This study proposes a spin-valley electron beam splitter based on the inner-edge states in a topological-insulator junction, which can allocate different ratios of spin-valley current outputs. Since the inner-edge states are associated with the "nearest path selection" mechanism, this device is referred to as the interface-modulating spin-valley electron beam splitter. Additionally, two perfect spin-valley filters in similar topological-insulator junctions are established in this study.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

Multi-Resonant Full-Solar-Spectrum Perfect Metamaterial Absorber.

Nanomaterials (Basel)

December 2024

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Currently, perfect absorption properties of metamaterials have attracted widespread interest in the area of solar energy. Ultra-broadband absorption, incidence angle insensitivity, and polarization independence are key performance indicators in the design of the absorbers. In this work, we proposed a metamaterial absorber based on the absorption mechanism with multiple resonances, including propagation surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), electric dipole resonance (EDR), and magnetic dipole resonance (MDR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!