During 'emergency' situations such as infections, host defense requires rapid mobilization of bone marrow granulocyte progenitors. 'Steady-state' granulopoiesis is absolutely dependent on the C/EBPalpha transcription factor, but the transcriptional mechanisms underlying emergency granulopoiesis remain unclear. Here we show that large numbers of granulocytes were generated from C/EBPalpha-deficient progenitors after cytokine stimulation in vivo. Cytokine treatment or fungal infection induced upregulation of C/EBPbeta but not C/EBPalpha or C/EBPepsilon transcripts in granulocyte progenitors, and C/EBPbeta-deficient progenitors showed decreased emergency-induced granulopoiesis in vitro and in vivo. C/EBPbeta inhibited proliferation less severely than did C/EBPalpha. These data suggest a critical function for C/EBPbeta in emergency granulopoiesis, which demands both differentiation and proliferation of granulocyte precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni1354DOI Listing

Publication Analysis

Top Keywords

granulocyte progenitors
8
emergency granulopoiesis
8
granulopoiesis
5
c/ebpbeta
4
c/ebpbeta required
4
required 'emergency'
4
'emergency' granulopoiesis
4
granulopoiesis 'emergency'
4
'emergency' situations
4
situations infections
4

Similar Publications

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Background: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!